curve.js
11.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
var _vector = require("./vector");
var v2Create = _vector.create;
var v2DistSquare = _vector.distSquare;
/**
* 曲线辅助模块
* @module zrender/core/curve
* @author pissang(https://www.github.com/pissang)
*/
var mathPow = Math.pow;
var mathSqrt = Math.sqrt;
var EPSILON = 1e-8;
var EPSILON_NUMERIC = 1e-4;
var THREE_SQRT = mathSqrt(3);
var ONE_THIRD = 1 / 3; // 临时变量
var _v0 = v2Create();
var _v1 = v2Create();
var _v2 = v2Create();
function isAroundZero(val) {
return val > -EPSILON && val < EPSILON;
}
function isNotAroundZero(val) {
return val > EPSILON || val < -EPSILON;
}
/**
* 计算三次贝塞尔值
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {number} t
* @return {number}
*/
function cubicAt(p0, p1, p2, p3, t) {
var onet = 1 - t;
return onet * onet * (onet * p0 + 3 * t * p1) + t * t * (t * p3 + 3 * onet * p2);
}
/**
* 计算三次贝塞尔导数值
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {number} t
* @return {number}
*/
function cubicDerivativeAt(p0, p1, p2, p3, t) {
var onet = 1 - t;
return 3 * (((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet + (p3 - p2) * t * t);
}
/**
* 计算三次贝塞尔方程根,使用盛金公式
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {number} val
* @param {Array.<number>} roots
* @return {number} 有效根数目
*/
function cubicRootAt(p0, p1, p2, p3, val, roots) {
// Evaluate roots of cubic functions
var a = p3 + 3 * (p1 - p2) - p0;
var b = 3 * (p2 - p1 * 2 + p0);
var c = 3 * (p1 - p0);
var d = p0 - val;
var A = b * b - 3 * a * c;
var B = b * c - 9 * a * d;
var C = c * c - 3 * b * d;
var n = 0;
if (isAroundZero(A) && isAroundZero(B)) {
if (isAroundZero(b)) {
roots[0] = 0;
} else {
var t1 = -c / b; //t1, t2, t3, b is not zero
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
}
} else {
var disc = B * B - 4 * A * C;
if (isAroundZero(disc)) {
var K = B / A;
var t1 = -b / a + K; // t1, a is not zero
var t2 = -K / 2; // t2, t3
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
if (t2 >= 0 && t2 <= 1) {
roots[n++] = t2;
}
} else if (disc > 0) {
var discSqrt = mathSqrt(disc);
var Y1 = A * b + 1.5 * a * (-B + discSqrt);
var Y2 = A * b + 1.5 * a * (-B - discSqrt);
if (Y1 < 0) {
Y1 = -mathPow(-Y1, ONE_THIRD);
} else {
Y1 = mathPow(Y1, ONE_THIRD);
}
if (Y2 < 0) {
Y2 = -mathPow(-Y2, ONE_THIRD);
} else {
Y2 = mathPow(Y2, ONE_THIRD);
}
var t1 = (-b - (Y1 + Y2)) / (3 * a);
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
} else {
var T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A));
var theta = Math.acos(T) / 3;
var ASqrt = mathSqrt(A);
var tmp = Math.cos(theta);
var t1 = (-b - 2 * ASqrt * tmp) / (3 * a);
var t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a);
var t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a);
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
if (t2 >= 0 && t2 <= 1) {
roots[n++] = t2;
}
if (t3 >= 0 && t3 <= 1) {
roots[n++] = t3;
}
}
}
return n;
}
/**
* 计算三次贝塞尔方程极限值的位置
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {Array.<number>} extrema
* @return {number} 有效数目
*/
function cubicExtrema(p0, p1, p2, p3, extrema) {
var b = 6 * p2 - 12 * p1 + 6 * p0;
var a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2;
var c = 3 * p1 - 3 * p0;
var n = 0;
if (isAroundZero(a)) {
if (isNotAroundZero(b)) {
var t1 = -c / b;
if (t1 >= 0 && t1 <= 1) {
extrema[n++] = t1;
}
}
} else {
var disc = b * b - 4 * a * c;
if (isAroundZero(disc)) {
extrema[0] = -b / (2 * a);
} else if (disc > 0) {
var discSqrt = mathSqrt(disc);
var t1 = (-b + discSqrt) / (2 * a);
var t2 = (-b - discSqrt) / (2 * a);
if (t1 >= 0 && t1 <= 1) {
extrema[n++] = t1;
}
if (t2 >= 0 && t2 <= 1) {
extrema[n++] = t2;
}
}
}
return n;
}
/**
* 细分三次贝塞尔曲线
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {number} t
* @param {Array.<number>} out
*/
function cubicSubdivide(p0, p1, p2, p3, t, out) {
var p01 = (p1 - p0) * t + p0;
var p12 = (p2 - p1) * t + p1;
var p23 = (p3 - p2) * t + p2;
var p012 = (p12 - p01) * t + p01;
var p123 = (p23 - p12) * t + p12;
var p0123 = (p123 - p012) * t + p012; // Seg0
out[0] = p0;
out[1] = p01;
out[2] = p012;
out[3] = p0123; // Seg1
out[4] = p0123;
out[5] = p123;
out[6] = p23;
out[7] = p3;
}
/**
* 投射点到三次贝塞尔曲线上,返回投射距离。
* 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
* @param {number} x0
* @param {number} y0
* @param {number} x1
* @param {number} y1
* @param {number} x2
* @param {number} y2
* @param {number} x3
* @param {number} y3
* @param {number} x
* @param {number} y
* @param {Array.<number>} [out] 投射点
* @return {number}
*/
function cubicProjectPoint(x0, y0, x1, y1, x2, y2, x3, y3, x, y, out) {
// http://pomax.github.io/bezierinfo/#projections
var t;
var interval = 0.005;
var d = Infinity;
var prev;
var next;
var d1;
var d2;
_v0[0] = x;
_v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值
// PENDING
for (var _t = 0; _t < 1; _t += 0.05) {
_v1[0] = cubicAt(x0, x1, x2, x3, _t);
_v1[1] = cubicAt(y0, y1, y2, y3, _t);
d1 = v2DistSquare(_v0, _v1);
if (d1 < d) {
t = _t;
d = d1;
}
}
d = Infinity; // At most 32 iteration
for (var i = 0; i < 32; i++) {
if (interval < EPSILON_NUMERIC) {
break;
}
prev = t - interval;
next = t + interval; // t - interval
_v1[0] = cubicAt(x0, x1, x2, x3, prev);
_v1[1] = cubicAt(y0, y1, y2, y3, prev);
d1 = v2DistSquare(_v1, _v0);
if (prev >= 0 && d1 < d) {
t = prev;
d = d1;
} else {
// t + interval
_v2[0] = cubicAt(x0, x1, x2, x3, next);
_v2[1] = cubicAt(y0, y1, y2, y3, next);
d2 = v2DistSquare(_v2, _v0);
if (next <= 1 && d2 < d) {
t = next;
d = d2;
} else {
interval *= 0.5;
}
}
} // t
if (out) {
out[0] = cubicAt(x0, x1, x2, x3, t);
out[1] = cubicAt(y0, y1, y2, y3, t);
} // console.log(interval, i);
return mathSqrt(d);
}
/**
* 计算二次方贝塞尔值
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} t
* @return {number}
*/
function quadraticAt(p0, p1, p2, t) {
var onet = 1 - t;
return onet * (onet * p0 + 2 * t * p1) + t * t * p2;
}
/**
* 计算二次方贝塞尔导数值
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} t
* @return {number}
*/
function quadraticDerivativeAt(p0, p1, p2, t) {
return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1));
}
/**
* 计算二次方贝塞尔方程根
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} t
* @param {Array.<number>} roots
* @return {number} 有效根数目
*/
function quadraticRootAt(p0, p1, p2, val, roots) {
var a = p0 - 2 * p1 + p2;
var b = 2 * (p1 - p0);
var c = p0 - val;
var n = 0;
if (isAroundZero(a)) {
if (isNotAroundZero(b)) {
var t1 = -c / b;
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
}
} else {
var disc = b * b - 4 * a * c;
if (isAroundZero(disc)) {
var t1 = -b / (2 * a);
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
} else if (disc > 0) {
var discSqrt = mathSqrt(disc);
var t1 = (-b + discSqrt) / (2 * a);
var t2 = (-b - discSqrt) / (2 * a);
if (t1 >= 0 && t1 <= 1) {
roots[n++] = t1;
}
if (t2 >= 0 && t2 <= 1) {
roots[n++] = t2;
}
}
}
return n;
}
/**
* 计算二次贝塞尔方程极限值
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @return {number}
*/
function quadraticExtremum(p0, p1, p2) {
var divider = p0 + p2 - 2 * p1;
if (divider === 0) {
// p1 is center of p0 and p2
return 0.5;
} else {
return (p0 - p1) / divider;
}
}
/**
* 细分二次贝塞尔曲线
* @memberOf module:zrender/core/curve
* @param {number} p0
* @param {number} p1
* @param {number} p2
* @param {number} t
* @param {Array.<number>} out
*/
function quadraticSubdivide(p0, p1, p2, t, out) {
var p01 = (p1 - p0) * t + p0;
var p12 = (p2 - p1) * t + p1;
var p012 = (p12 - p01) * t + p01; // Seg0
out[0] = p0;
out[1] = p01;
out[2] = p012; // Seg1
out[3] = p012;
out[4] = p12;
out[5] = p2;
}
/**
* 投射点到二次贝塞尔曲线上,返回投射距离。
* 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。
* @param {number} x0
* @param {number} y0
* @param {number} x1
* @param {number} y1
* @param {number} x2
* @param {number} y2
* @param {number} x
* @param {number} y
* @param {Array.<number>} out 投射点
* @return {number}
*/
function quadraticProjectPoint(x0, y0, x1, y1, x2, y2, x, y, out) {
// http://pomax.github.io/bezierinfo/#projections
var t;
var interval = 0.005;
var d = Infinity;
_v0[0] = x;
_v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值
// PENDING
for (var _t = 0; _t < 1; _t += 0.05) {
_v1[0] = quadraticAt(x0, x1, x2, _t);
_v1[1] = quadraticAt(y0, y1, y2, _t);
var d1 = v2DistSquare(_v0, _v1);
if (d1 < d) {
t = _t;
d = d1;
}
}
d = Infinity; // At most 32 iteration
for (var i = 0; i < 32; i++) {
if (interval < EPSILON_NUMERIC) {
break;
}
var prev = t - interval;
var next = t + interval; // t - interval
_v1[0] = quadraticAt(x0, x1, x2, prev);
_v1[1] = quadraticAt(y0, y1, y2, prev);
var d1 = v2DistSquare(_v1, _v0);
if (prev >= 0 && d1 < d) {
t = prev;
d = d1;
} else {
// t + interval
_v2[0] = quadraticAt(x0, x1, x2, next);
_v2[1] = quadraticAt(y0, y1, y2, next);
var d2 = v2DistSquare(_v2, _v0);
if (next <= 1 && d2 < d) {
t = next;
d = d2;
} else {
interval *= 0.5;
}
}
} // t
if (out) {
out[0] = quadraticAt(x0, x1, x2, t);
out[1] = quadraticAt(y0, y1, y2, t);
} // console.log(interval, i);
return mathSqrt(d);
}
exports.cubicAt = cubicAt;
exports.cubicDerivativeAt = cubicDerivativeAt;
exports.cubicRootAt = cubicRootAt;
exports.cubicExtrema = cubicExtrema;
exports.cubicSubdivide = cubicSubdivide;
exports.cubicProjectPoint = cubicProjectPoint;
exports.quadraticAt = quadraticAt;
exports.quadraticDerivativeAt = quadraticDerivativeAt;
exports.quadraticRootAt = quadraticRootAt;
exports.quadraticExtremum = quadraticExtremum;
exports.quadraticSubdivide = quadraticSubdivide;
exports.quadraticProjectPoint = quadraticProjectPoint;