format.h 121 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/*
 Formatting library for C++

 Copyright (c) 2012 - present, Victor Zverovich

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 --- Optional exception to the license ---

 As an exception, if, as a result of your compiling your source code, portions
 of this Software are embedded into a machine-executable object form of such
 source code, you may redistribute such embedded portions in such object form
 without including the above copyright and permission notices.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <algorithm>
#include <cerrno>
#include <cmath>
#include <cstdint>
#include <limits>
#include <memory>
#include <stdexcept>

#include "core.h"

#ifdef __INTEL_COMPILER
#  define FMT_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICL)
#  define FMT_ICC_VERSION __ICL
#else
#  define FMT_ICC_VERSION 0
#endif

#ifdef __NVCC__
#  define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#else
#  define FMT_CUDA_VERSION 0
#endif

#ifdef __has_builtin
#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define FMT_HAS_BUILTIN(x) 0
#endif

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_NOINLINE __attribute__((noinline))
#else
#  define FMT_NOINLINE
#endif

#if __cplusplus == 201103L || __cplusplus == 201402L
#  if defined(__clang__)
#    define FMT_FALLTHROUGH [[clang::fallthrough]]
#  elif FMT_GCC_VERSION >= 700 && !defined(__PGI) && \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
#    define FMT_FALLTHROUGH [[gnu::fallthrough]]
#  else
#    define FMT_FALLTHROUGH
#  endif
#elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \
    (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#  define FMT_FALLTHROUGH [[fallthrough]]
#else
#  define FMT_FALLTHROUGH
#endif

#ifndef FMT_MAYBE_UNUSED
#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
#    define FMT_MAYBE_UNUSED [[maybe_unused]]
#  else
#    define FMT_MAYBE_UNUSED
#  endif
#endif

#ifndef FMT_THROW
#  if FMT_EXCEPTIONS
#    if FMT_MSC_VER || FMT_NVCC
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Exception> inline void do_throw(const Exception& x) {
  // Silence unreachable code warnings in MSVC and NVCC because these
  // are nearly impossible to fix in a generic code.
  volatile bool b = true;
  if (b) throw x;
}
}  // namespace detail
FMT_END_NAMESPACE
#      define FMT_THROW(x) detail::do_throw(x)
#    else
#      define FMT_THROW(x) throw x
#    endif
#  else
#    define FMT_THROW(x)              \
      do {                            \
        static_cast<void>(sizeof(x)); \
        FMT_ASSERT(false, "");        \
      } while (false)
#  endif
#endif

#if FMT_EXCEPTIONS
#  define FMT_TRY try
#  define FMT_CATCH(x) catch (x)
#else
#  define FMT_TRY if (true)
#  define FMT_CATCH(x) if (false)
#endif

#ifndef FMT_USE_USER_DEFINED_LITERALS
// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
       FMT_MSC_VER >= 1900) &&                                         \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
#    define FMT_USE_USER_DEFINED_LITERALS 1
#  else
#    define FMT_USE_USER_DEFINED_LITERALS 0
#  endif
#endif

#ifndef FMT_USE_UDL_TEMPLATE
// EDG frontend based compilers (icc, nvcc, etc) and GCC < 6.4 do not properly
// support UDL templates and GCC >= 9 warns about them.
#  if FMT_USE_USER_DEFINED_LITERALS &&                         \
      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 501) && \
      ((FMT_GCC_VERSION >= 604 && __cplusplus >= 201402L) ||   \
       FMT_CLANG_VERSION >= 304)
#    define FMT_USE_UDL_TEMPLATE 1
#  else
#    define FMT_USE_UDL_TEMPLATE 0
#  endif
#endif

#ifndef FMT_USE_FLOAT
#  define FMT_USE_FLOAT 1
#endif

#ifndef FMT_USE_DOUBLE
#  define FMT_USE_DOUBLE 1
#endif

#ifndef FMT_USE_LONG_DOUBLE
#  define FMT_USE_LONG_DOUBLE 1
#endif

// __builtin_clz is broken in clang with Microsoft CodeGen:
// https://github.com/fmtlib/fmt/issues/519
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
#endif
#if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER
#  define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
#endif

// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
// MSVC intrinsics if the clz and clzll builtins are not available.
#if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED)
#  include <intrin.h>  // _BitScanReverse, _BitScanReverse64

FMT_BEGIN_NAMESPACE
namespace detail {
// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
#  ifndef __clang__
#    pragma intrinsic(_BitScanReverse)
#  endif
inline uint32_t clz(uint32_t x) {
  unsigned long r = 0;
  _BitScanReverse(&r, x);

  FMT_ASSERT(x != 0, "");
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
  FMT_SUPPRESS_MSC_WARNING(6102)
  return 31 - r;
}
#  define FMT_BUILTIN_CLZ(n) detail::clz(n)

#  if defined(_WIN64) && !defined(__clang__)
#    pragma intrinsic(_BitScanReverse64)
#  endif

inline uint32_t clzll(uint64_t x) {
  unsigned long r = 0;
#  ifdef _WIN64
  _BitScanReverse64(&r, x);
#  else
  // Scan the high 32 bits.
  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 - (r + 32);

  // Scan the low 32 bits.
  _BitScanReverse(&r, static_cast<uint32_t>(x));
#  endif

  FMT_ASSERT(x != 0, "");
  // Static analysis complains about using uninitialized data
  // "r", but the only way that can happen is if "x" is 0,
  // which the callers guarantee to not happen.
  FMT_SUPPRESS_MSC_WARNING(6102)
  return 63 - r;
}
#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
}  // namespace detail
FMT_END_NAMESPACE
#endif

// Enable the deprecated numeric alignment.
#ifndef FMT_DEPRECATED_NUMERIC_ALIGN
#  define FMT_DEPRECATED_NUMERIC_ALIGN 0
#endif

FMT_BEGIN_NAMESPACE
namespace detail {

// An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have
// undefined behavior (e.g. due to type aliasing).
// Example: uint64_t d = bit_cast<uint64_t>(2.718);
template <typename Dest, typename Source>
inline Dest bit_cast(const Source& source) {
  static_assert(sizeof(Dest) == sizeof(Source), "size mismatch");
  Dest dest;
  std::memcpy(&dest, &source, sizeof(dest));
  return dest;
}

inline bool is_big_endian() {
  const auto u = 1u;
  struct bytes {
    char data[sizeof(u)];
  };
  return bit_cast<bytes>(u).data[0] == 0;
}

// A fallback implementation of uintptr_t for systems that lack it.
struct fallback_uintptr {
  unsigned char value[sizeof(void*)];

  fallback_uintptr() = default;
  explicit fallback_uintptr(const void* p) {
    *this = bit_cast<fallback_uintptr>(p);
    if (is_big_endian()) {
      for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j)
        std::swap(value[i], value[j]);
    }
  }
};
#ifdef UINTPTR_MAX
using uintptr_t = ::uintptr_t;
inline uintptr_t to_uintptr(const void* p) { return bit_cast<uintptr_t>(p); }
#else
using uintptr_t = fallback_uintptr;
inline fallback_uintptr to_uintptr(const void* p) {
  return fallback_uintptr(p);
}
#endif

// Returns the largest possible value for type T. Same as
// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
template <typename T> constexpr T max_value() {
  return (std::numeric_limits<T>::max)();
}
template <typename T> constexpr int num_bits() {
  return std::numeric_limits<T>::digits;
}
// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
template <> constexpr int num_bits<int128_t>() { return 128; }
template <> constexpr int num_bits<uint128_t>() { return 128; }
template <> constexpr int num_bits<fallback_uintptr>() {
  return static_cast<int>(sizeof(void*) *
                          std::numeric_limits<unsigned char>::digits);
}

FMT_INLINE void assume(bool condition) {
  (void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume)
  __builtin_assume(condition);
#endif
}

// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename... Ts> struct void_t_impl { using type = void; };

template <typename... Ts>
using void_t = typename detail::void_t_impl<Ts...>::type;

// An approximation of iterator_t for pre-C++20 systems.
template <typename T>
using iterator_t = decltype(std::begin(std::declval<T&>()));
template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));

// Detect the iterator category of *any* given type in a SFINAE-friendly way.
// Unfortunately, older implementations of std::iterator_traits are not safe
// for use in a SFINAE-context.
template <typename It, typename Enable = void>
struct iterator_category : std::false_type {};

template <typename T> struct iterator_category<T*> {
  using type = std::random_access_iterator_tag;
};

template <typename It>
struct iterator_category<It, void_t<typename It::iterator_category>> {
  using type = typename It::iterator_category;
};

// Detect if *any* given type models the OutputIterator concept.
template <typename It> class is_output_iterator {
  // Check for mutability because all iterator categories derived from
  // std::input_iterator_tag *may* also meet the requirements of an
  // OutputIterator, thereby falling into the category of 'mutable iterators'
  // [iterator.requirements.general] clause 4. The compiler reveals this
  // property only at the point of *actually dereferencing* the iterator!
  template <typename U>
  static decltype(*(std::declval<U>())) test(std::input_iterator_tag);
  template <typename U> static char& test(std::output_iterator_tag);
  template <typename U> static const char& test(...);

  using type = decltype(test<It>(typename iterator_category<It>::type{}));

 public:
  enum { value = !std::is_const<remove_reference_t<type>>::value };
};

// A workaround for std::string not having mutable data() until C++17.
template <typename Char> inline Char* get_data(std::basic_string<Char>& s) {
  return &s[0];
}
template <typename Container>
inline typename Container::value_type* get_data(Container& c) {
  return c.data();
}

#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T> checked_ptr<T> make_checked(T* p, size_t size) {
  return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> inline T* make_checked(T* p, size_t) { return p; }
#endif

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
#if FMT_CLANG_VERSION
__attribute__((no_sanitize("undefined")))
#endif
inline checked_ptr<typename Container::value_type>
reserve(std::back_insert_iterator<Container> it, size_t n) {
  Container& c = get_container(it);
  size_t size = c.size();
  c.resize(size + n);
  return make_checked(get_data(c) + size, n);
}

template <typename Iterator> inline Iterator& reserve(Iterator& it, size_t) {
  return it;
}

template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline std::back_insert_iterator<Container> base_iterator(
    std::back_insert_iterator<Container>& it,
    checked_ptr<typename Container::value_type>) {
  return it;
}

template <typename Iterator>
inline Iterator base_iterator(Iterator, Iterator it) {
  return it;
}

// An output iterator that counts the number of objects written to it and
// discards them.
class counting_iterator {
 private:
  size_t count_;

 public:
  using iterator_category = std::output_iterator_tag;
  using difference_type = std::ptrdiff_t;
  using pointer = void;
  using reference = void;
  using _Unchecked_type = counting_iterator;  // Mark iterator as checked.

  struct value_type {
    template <typename T> void operator=(const T&) {}
  };

  counting_iterator() : count_(0) {}

  size_t count() const { return count_; }

  counting_iterator& operator++() {
    ++count_;
    return *this;
  }

  counting_iterator operator++(int) {
    auto it = *this;
    ++*this;
    return it;
  }

  value_type operator*() const { return {}; }
};

template <typename OutputIt> class truncating_iterator_base {
 protected:
  OutputIt out_;
  size_t limit_;
  size_t count_;

  truncating_iterator_base(OutputIt out, size_t limit)
      : out_(out), limit_(limit), count_(0) {}

 public:
  using iterator_category = std::output_iterator_tag;
  using value_type = typename std::iterator_traits<OutputIt>::value_type;
  using difference_type = void;
  using pointer = void;
  using reference = void;
  using _Unchecked_type =
      truncating_iterator_base;  // Mark iterator as checked.

  OutputIt base() const { return out_; }
  size_t count() const { return count_; }
};

// An output iterator that truncates the output and counts the number of objects
// written to it.
template <typename OutputIt,
          typename Enable = typename std::is_void<
              typename std::iterator_traits<OutputIt>::value_type>::type>
class truncating_iterator;

template <typename OutputIt>
class truncating_iterator<OutputIt, std::false_type>
    : public truncating_iterator_base<OutputIt> {
  mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_;

 public:
  using value_type = typename truncating_iterator_base<OutputIt>::value_type;

  truncating_iterator(OutputIt out, size_t limit)
      : truncating_iterator_base<OutputIt>(out, limit) {}

  truncating_iterator& operator++() {
    if (this->count_++ < this->limit_) ++this->out_;
    return *this;
  }

  truncating_iterator operator++(int) {
    auto it = *this;
    ++*this;
    return it;
  }

  value_type& operator*() const {
    return this->count_ < this->limit_ ? *this->out_ : blackhole_;
  }
};

template <typename OutputIt>
class truncating_iterator<OutputIt, std::true_type>
    : public truncating_iterator_base<OutputIt> {
 public:
  truncating_iterator(OutputIt out, size_t limit)
      : truncating_iterator_base<OutputIt>(out, limit) {}

  template <typename T> truncating_iterator& operator=(T val) {
    if (this->count_++ < this->limit_) *this->out_++ = val;
    return *this;
  }

  truncating_iterator& operator++() { return *this; }
  truncating_iterator& operator++(int) { return *this; }
  truncating_iterator& operator*() { return *this; }
};

template <typename Char>
inline size_t count_code_points(basic_string_view<Char> s) {
  return s.size();
}

// Counts the number of code points in a UTF-8 string.
inline size_t count_code_points(basic_string_view<char> s) {
  const char* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80) ++num_code_points;
  }
  return num_code_points;
}

inline size_t count_code_points(basic_string_view<char8_type> s) {
  return count_code_points(basic_string_view<char>(
      reinterpret_cast<const char*>(s.data()), s.size()));
}

template <typename Char>
inline size_t code_point_index(basic_string_view<Char> s, size_t n) {
  size_t size = s.size();
  return n < size ? n : size;
}

// Calculates the index of the nth code point in a UTF-8 string.
inline size_t code_point_index(basic_string_view<char8_type> s, size_t n) {
  const char8_type* data = s.data();
  size_t num_code_points = 0;
  for (size_t i = 0, size = s.size(); i != size; ++i) {
    if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) {
      return i;
    }
  }
  return s.size();
}

template <typename InputIt, typename OutChar>
using needs_conversion = bool_constant<
    std::is_same<typename std::iterator_traits<InputIt>::value_type,
                 char>::value &&
    std::is_same<OutChar, char8_type>::value>;

template <typename OutChar, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)>
OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) {
  return std::copy(begin, end, it);
}

template <typename OutChar, typename InputIt, typename OutputIt,
          FMT_ENABLE_IF(needs_conversion<InputIt, OutChar>::value)>
OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) {
  return std::transform(begin, end, it,
                        [](char c) { return static_cast<char8_type>(c); });
}

#ifndef FMT_USE_GRISU
#  define FMT_USE_GRISU 1
#endif

template <typename T> constexpr bool use_grisu() {
  return FMT_USE_GRISU && std::numeric_limits<double>::is_iec559 &&
         sizeof(T) <= sizeof(double);
}

template <typename T>
template <typename U>
void buffer<T>::append(const U* begin, const U* end) {
  size_t new_size = size_ + to_unsigned(end - begin);
  reserve(new_size);
  std::uninitialized_copy(begin, end,
                          make_checked(ptr_ + size_, capacity_ - size_));
  size_ = new_size;
}
}  // namespace detail

// The number of characters to store in the basic_memory_buffer object itself
// to avoid dynamic memory allocation.
enum { inline_buffer_size = 500 };

/**
  \rst
  A dynamically growing memory buffer for trivially copyable/constructible types
  with the first ``SIZE`` elements stored in the object itself.

  You can use one of the following type aliases for common character types:

  +----------------+------------------------------+
  | Type           | Definition                   |
  +================+==============================+
  | memory_buffer  | basic_memory_buffer<char>    |
  +----------------+------------------------------+
  | wmemory_buffer | basic_memory_buffer<wchar_t> |
  +----------------+------------------------------+

  **Example**::

     fmt::memory_buffer out;
     format_to(out, "The answer is {}.", 42);

  This will append the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42.

  The output can be converted to an ``std::string`` with ``to_string(out)``.
  \endrst
 */
template <typename T, size_t SIZE = inline_buffer_size,
          typename Allocator = std::allocator<T>>
class basic_memory_buffer : public detail::buffer<T> {
 private:
  T store_[SIZE];

  // Don't inherit from Allocator avoid generating type_info for it.
  Allocator alloc_;

  // Deallocate memory allocated by the buffer.
  void deallocate() {
    T* data = this->data();
    if (data != store_) alloc_.deallocate(data, this->capacity());
  }

 protected:
  void grow(size_t size) FMT_OVERRIDE;

 public:
  using value_type = T;
  using const_reference = const T&;

  explicit basic_memory_buffer(const Allocator& alloc = Allocator())
      : alloc_(alloc) {
    this->set(store_, SIZE);
  }
  ~basic_memory_buffer() FMT_OVERRIDE { deallocate(); }

 private:
  // Move data from other to this buffer.
  void move(basic_memory_buffer& other) {
    alloc_ = std::move(other.alloc_);
    T* data = other.data();
    size_t size = other.size(), capacity = other.capacity();
    if (data == other.store_) {
      this->set(store_, capacity);
      std::uninitialized_copy(other.store_, other.store_ + size,
                              detail::make_checked(store_, capacity));
    } else {
      this->set(data, capacity);
      // Set pointer to the inline array so that delete is not called
      // when deallocating.
      other.set(other.store_, 0);
    }
    this->resize(size);
  }

 public:
  /**
    \rst
    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
    of the other object to it.
    \endrst
   */
  basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); }

  /**
    \rst
    Moves the content of the other ``basic_memory_buffer`` object to this one.
    \endrst
   */
  basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT {
    FMT_ASSERT(this != &other, "");
    deallocate();
    move(other);
    return *this;
  }

  // Returns a copy of the allocator associated with this buffer.
  Allocator get_allocator() const { return alloc_; }
};

template <typename T, size_t SIZE, typename Allocator>
void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) {
#ifdef FMT_FUZZ
  if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much");
#endif
  size_t old_capacity = this->capacity();
  size_t new_capacity = old_capacity + old_capacity / 2;
  if (size > new_capacity) new_capacity = size;
  T* old_data = this->data();
  T* new_data =
      std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
  // The following code doesn't throw, so the raw pointer above doesn't leak.
  std::uninitialized_copy(old_data, old_data + this->size(),
                          detail::make_checked(new_data, new_capacity));
  this->set(new_data, new_capacity);
  // deallocate must not throw according to the standard, but even if it does,
  // the buffer already uses the new storage and will deallocate it in
  // destructor.
  if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
}

using memory_buffer = basic_memory_buffer<char>;
using wmemory_buffer = basic_memory_buffer<wchar_t>;

template <typename T, size_t SIZE, typename Allocator>
struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
};

/** A formatting error such as invalid format string. */
FMT_CLASS_API
class FMT_API format_error : public std::runtime_error {
 public:
  explicit format_error(const char* message) : std::runtime_error(message) {}
  explicit format_error(const std::string& message)
      : std::runtime_error(message) {}
  format_error(const format_error&) = default;
  format_error& operator=(const format_error&) = default;
  format_error(format_error&&) = default;
  format_error& operator=(format_error&&) = default;
  ~format_error() FMT_NOEXCEPT FMT_OVERRIDE;
};

namespace detail {

template <typename T>
using is_signed =
    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
                                     std::is_same<T, int128_t>::value>;

// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
FMT_CONSTEXPR bool is_negative(T value) {
  return value < 0;
}
template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
FMT_CONSTEXPR bool is_negative(T) {
  return false;
}

template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
FMT_CONSTEXPR bool is_supported_floating_point(T) {
  return (std::is_same<T, float>::value && FMT_USE_FLOAT) ||
         (std::is_same<T, double>::value && FMT_USE_DOUBLE) ||
         (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE);
}

// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
// represent all values of T.
template <typename T>
using uint32_or_64_or_128_t =
    conditional_t<num_bits<T>() <= 32, uint32_t,
                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;

// Static data is placed in this class template for the header-only config.
template <typename T = void> struct FMT_EXTERN_TEMPLATE_API basic_data {
  static const uint64_t powers_of_10_64[];
  static const uint32_t zero_or_powers_of_10_32[];
  static const uint64_t zero_or_powers_of_10_64[];
  static const uint64_t pow10_significands[];
  static const int16_t pow10_exponents[];
  // GCC generates slightly better code for pairs than chars.
  using digit_pair = char[2];
  static const digit_pair digits[];
  static const char hex_digits[];
  static const char foreground_color[];
  static const char background_color[];
  static const char reset_color[5];
  static const wchar_t wreset_color[5];
  static const char signs[];
  static const char left_padding_shifts[5];
  static const char right_padding_shifts[5];
};

#ifndef FMT_EXPORTED
FMT_EXTERN template struct basic_data<void>;
#endif

// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};

#ifdef FMT_BUILTIN_CLZLL
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline int count_digits(uint64_t n) {
  // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits.
  int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12;
  return t - (n < data::zero_or_powers_of_10_64[t]) + 1;
}
#else
// Fallback version of count_digits used when __builtin_clz is not available.
inline int count_digits(uint64_t n) {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#endif

#if FMT_USE_INT128
inline int count_digits(uint128_t n) {
  int count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000U;
    count += 4;
  }
}
#endif

// Counts the number of digits in n. BITS = log2(radix).
template <unsigned BITS, typename UInt> inline int count_digits(UInt n) {
  int num_digits = 0;
  do {
    ++num_digits;
  } while ((n >>= BITS) != 0);
  return num_digits;
}

template <> int count_digits<4>(detail::fallback_uintptr n);

#if FMT_GCC_VERSION || FMT_CLANG_VERSION
#  define FMT_ALWAYS_INLINE inline __attribute__((always_inline))
#else
#  define FMT_ALWAYS_INLINE
#endif

#ifdef FMT_BUILTIN_CLZ
// Optional version of count_digits for better performance on 32-bit platforms.
inline int count_digits(uint32_t n) {
  int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12;
  return t - (n < data::zero_or_powers_of_10_32[t]) + 1;
}
#endif

template <typename Int> constexpr int digits10() FMT_NOEXCEPT {
  return std::numeric_limits<Int>::digits10;
}
template <> constexpr int digits10<int128_t>() FMT_NOEXCEPT { return 38; }
template <> constexpr int digits10<uint128_t>() FMT_NOEXCEPT { return 38; }

template <typename Char> FMT_API std::string grouping_impl(locale_ref loc);
template <typename Char> inline std::string grouping(locale_ref loc) {
  return grouping_impl<char>(loc);
}
template <> inline std::string grouping<wchar_t>(locale_ref loc) {
  return grouping_impl<wchar_t>(loc);
}

template <typename Char> FMT_API Char thousands_sep_impl(locale_ref loc);
template <typename Char> inline Char thousands_sep(locale_ref loc) {
  return Char(thousands_sep_impl<char>(loc));
}
template <> inline wchar_t thousands_sep(locale_ref loc) {
  return thousands_sep_impl<wchar_t>(loc);
}

template <typename Char> FMT_API Char decimal_point_impl(locale_ref loc);
template <typename Char> inline Char decimal_point(locale_ref loc) {
  return Char(decimal_point_impl<char>(loc));
}
template <> inline wchar_t decimal_point(locale_ref loc) {
  return decimal_point_impl<wchar_t>(loc);
}

// Compares two characters for equality.
template <typename Char> bool equal2(const Char* lhs, const char* rhs) {
  return lhs[0] == rhs[0] && lhs[1] == rhs[1];
}
inline bool equal2(const char* lhs, const char* rhs) {
  return memcmp(lhs, rhs, 2) == 0;
}

// Copies two characters from src to dst.
template <typename Char> void copy2(Char* dst, const char* src) {
  *dst++ = static_cast<Char>(*src++);
  *dst = static_cast<Char>(*src);
}
inline void copy2(char* dst, const char* src) { memcpy(dst, src, 2); }

template <typename Iterator> struct format_decimal_result {
  Iterator begin;
  Iterator end;
};

// Formats a decimal unsigned integer value writing into out pointing to a
// buffer of specified size. The caller must ensure that the buffer is large
// enough.
template <typename Char, typename UInt>
inline format_decimal_result<Char*> format_decimal(Char* out, UInt value,
                                                   int size) {
  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
  out += size;
  Char* end = out;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    out -= 2;
    copy2(out, data::digits[value % 100]);
    value /= 100;
  }
  if (value < 10) {
    *--out = static_cast<Char>('0' + value);
    return {out, end};
  }
  out -= 2;
  copy2(out, data::digits[value]);
  return {out, end};
}

template <typename Char, typename UInt, typename Iterator,
          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
inline format_decimal_result<Iterator> format_decimal(Iterator out, UInt value,
                                                      int num_digits) {
  // Buffer should be large enough to hold all digits (<= digits10 + 1).
  enum { max_size = digits10<UInt>() + 1 };
  Char buffer[2 * max_size];
  auto end = format_decimal(buffer, value, num_digits).end;
  return {out, detail::copy_str<Char>(buffer, end, out)};
}

template <unsigned BASE_BITS, typename Char, typename UInt>
inline Char* format_uint(Char* buffer, UInt value, int num_digits,
                         bool upper = false) {
  buffer += num_digits;
  Char* end = buffer;
  do {
    const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits;
    unsigned digit = (value & ((1 << BASE_BITS) - 1));
    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
                                                : digits[digit]);
  } while ((value >>= BASE_BITS) != 0);
  return end;
}

template <unsigned BASE_BITS, typename Char>
Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits,
                  bool = false) {
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  int start = (num_digits + char_digits - 1) / char_digits - 1;
  if (int start_digits = num_digits % char_digits) {
    unsigned value = n.value[start--];
    buffer = format_uint<BASE_BITS>(buffer, value, start_digits);
  }
  for (; start >= 0; --start) {
    unsigned value = n.value[start];
    buffer += char_digits;
    auto p = buffer;
    for (int i = 0; i < char_digits; ++i) {
      unsigned digit = (value & ((1 << BASE_BITS) - 1));
      *--p = static_cast<Char>(data::hex_digits[digit]);
      value >>= BASE_BITS;
    }
  }
  return buffer;
}

template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline It format_uint(It out, UInt value, int num_digits, bool upper = false) {
  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
  char buffer[num_bits<UInt>() / BASE_BITS + 1];
  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
  return detail::copy_str<Char>(buffer, buffer + num_digits, out);
}

// A converter from UTF-8 to UTF-16.
class utf8_to_utf16 {
 private:
  wmemory_buffer buffer_;

 public:
  FMT_API explicit utf8_to_utf16(string_view s);
  operator wstring_view() const { return {&buffer_[0], size()}; }
  size_t size() const { return buffer_.size() - 1; }
  const wchar_t* c_str() const { return &buffer_[0]; }
  std::wstring str() const { return {&buffer_[0], size()}; }
};

template <typename T = void> struct null {};

// Workaround an array initialization issue in gcc 4.8.
template <typename Char> struct fill_t {
 private:
  enum { max_size = 4 };
  Char data_[max_size];
  unsigned char size_;

 public:
  FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
    auto size = s.size();
    if (size > max_size) {
      FMT_THROW(format_error("invalid fill"));
      return;
    }
    for (size_t i = 0; i < size; ++i) data_[i] = s[i];
    size_ = static_cast<unsigned char>(size);
  }

  size_t size() const { return size_; }
  const Char* data() const { return data_; }

  FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; }
  FMT_CONSTEXPR const Char& operator[](size_t index) const {
    return data_[index];
  }

  static FMT_CONSTEXPR fill_t<Char> make() {
    auto fill = fill_t<Char>();
    fill[0] = Char(' ');
    fill.size_ = 1;
    return fill;
  }
};
}  // namespace detail

// We cannot use enum classes as bit fields because of a gcc bug
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414.
namespace align {
enum type { none, left, right, center, numeric };
}
using align_t = align::type;

namespace sign {
enum type { none, minus, plus, space };
}
using sign_t = sign::type;

// Format specifiers for built-in and string types.
template <typename Char> struct basic_format_specs {
  int width;
  int precision;
  char type;
  align_t align : 4;
  sign_t sign : 3;
  bool alt : 1;  // Alternate form ('#').
  detail::fill_t<Char> fill;

  constexpr basic_format_specs()
      : width(0),
        precision(-1),
        type(0),
        align(align::none),
        sign(sign::none),
        alt(false),
        fill(detail::fill_t<Char>::make()) {}
};

using format_specs = basic_format_specs<char>;

namespace detail {

// A floating-point presentation format.
enum class float_format : unsigned char {
  general,  // General: exponent notation or fixed point based on magnitude.
  exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
  fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
  hex
};

struct float_specs {
  int precision;
  float_format format : 8;
  sign_t sign : 8;
  bool upper : 1;
  bool locale : 1;
  bool binary32 : 1;
  bool use_grisu : 1;
  bool showpoint : 1;
};

// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Char, typename It> It write_exponent(int exp, It it) {
  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
  if (exp < 0) {
    *it++ = static_cast<Char>('-');
    exp = -exp;
  } else {
    *it++ = static_cast<Char>('+');
  }
  if (exp >= 100) {
    const char* top = data::digits[exp / 100];
    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
    *it++ = static_cast<Char>(top[1]);
    exp %= 100;
  }
  const char* d = data::digits[exp];
  *it++ = static_cast<Char>(d[0]);
  *it++ = static_cast<Char>(d[1]);
  return it;
}

template <typename Char> class float_writer {
 private:
  // The number is given as v = digits_ * pow(10, exp_).
  const char* digits_;
  int num_digits_;
  int exp_;
  size_t size_;
  float_specs specs_;
  Char decimal_point_;

  template <typename It> It prettify(It it) const {
    // pow(10, full_exp - 1) <= v <= pow(10, full_exp).
    int full_exp = num_digits_ + exp_;
    if (specs_.format == float_format::exp) {
      // Insert a decimal point after the first digit and add an exponent.
      *it++ = static_cast<Char>(*digits_);
      int num_zeros = specs_.precision - num_digits_;
      if (num_digits_ > 1 || specs_.showpoint) *it++ = decimal_point_;
      it = copy_str<Char>(digits_ + 1, digits_ + num_digits_, it);
      if (num_zeros > 0 && specs_.showpoint)
        it = std::fill_n(it, num_zeros, static_cast<Char>('0'));
      *it++ = static_cast<Char>(specs_.upper ? 'E' : 'e');
      return write_exponent<Char>(full_exp - 1, it);
    }
    if (num_digits_ <= full_exp) {
      // 1234e7 -> 12340000000[.0+]
      it = copy_str<Char>(digits_, digits_ + num_digits_, it);
      it = std::fill_n(it, full_exp - num_digits_, static_cast<Char>('0'));
      if (specs_.showpoint || specs_.precision < 0) {
        *it++ = decimal_point_;
        int num_zeros = specs_.precision - full_exp;
        if (num_zeros <= 0) {
          if (specs_.format != float_format::fixed)
            *it++ = static_cast<Char>('0');
          return it;
        }
#ifdef FMT_FUZZ
        if (num_zeros > 5000)
          throw std::runtime_error("fuzz mode - avoiding excessive cpu use");
#endif
        it = std::fill_n(it, num_zeros, static_cast<Char>('0'));
      }
    } else if (full_exp > 0) {
      // 1234e-2 -> 12.34[0+]
      it = copy_str<Char>(digits_, digits_ + full_exp, it);
      if (!specs_.showpoint) {
        // Remove trailing zeros.
        int num_digits = num_digits_;
        while (num_digits > full_exp && digits_[num_digits - 1] == '0')
          --num_digits;
        if (num_digits != full_exp) *it++ = decimal_point_;
        return copy_str<Char>(digits_ + full_exp, digits_ + num_digits, it);
      }
      *it++ = decimal_point_;
      it = copy_str<Char>(digits_ + full_exp, digits_ + num_digits_, it);
      if (specs_.precision > num_digits_) {
        // Add trailing zeros.
        int num_zeros = specs_.precision - num_digits_;
        it = std::fill_n(it, num_zeros, static_cast<Char>('0'));
      }
    } else {
      // 1234e-6 -> 0.001234
      *it++ = static_cast<Char>('0');
      int num_zeros = -full_exp;
      int num_digits = num_digits_;
      if (num_digits == 0 && specs_.precision >= 0 &&
          specs_.precision < num_zeros) {
        num_zeros = specs_.precision;
      }
      // Remove trailing zeros.
      if (!specs_.showpoint)
        while (num_digits > 0 && digits_[num_digits - 1] == '0') --num_digits;
      if (num_zeros != 0 || num_digits != 0 || specs_.showpoint) {
        *it++ = decimal_point_;
        it = std::fill_n(it, num_zeros, static_cast<Char>('0'));
        it = copy_str<Char>(digits_, digits_ + num_digits, it);
      }
    }
    return it;
  }

 public:
  float_writer(const char* digits, int num_digits, int exp, float_specs specs,
               Char decimal_point)
      : digits_(digits),
        num_digits_(num_digits),
        exp_(exp),
        specs_(specs),
        decimal_point_(decimal_point) {
    int full_exp = num_digits + exp - 1;
    int precision = specs.precision > 0 ? specs.precision : 16;
    if (specs_.format == float_format::general &&
        !(full_exp >= -4 && full_exp < precision)) {
      specs_.format = float_format::exp;
    }
    size_ = prettify(counting_iterator()).count();
    size_ += specs.sign ? 1 : 0;
  }

  size_t size() const { return size_; }

  template <typename It> It operator()(It it) const {
    if (specs_.sign) *it++ = static_cast<Char>(data::signs[specs_.sign]);
    return prettify(it);
  }
};

template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf);

// Formats a floating-point number with snprintf.
template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
                   buffer<char>& buf);

template <typename T> T promote_float(T value) { return value; }
inline double promote_float(float value) { return static_cast<double>(value); }

template <typename Handler>
FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) {
  switch (spec) {
  case 0:
  case 'd':
    handler.on_dec();
    break;
  case 'x':
  case 'X':
    handler.on_hex();
    break;
  case 'b':
  case 'B':
    handler.on_bin();
    break;
  case 'o':
    handler.on_oct();
    break;
#ifdef FMT_DEPRECATED_N_SPECIFIER
  case 'n':
#endif
  case 'L':
    handler.on_num();
    break;
  case 'c':
    handler.on_chr();
    break;
  default:
    handler.on_error();
  }
}

template <typename ErrorHandler = error_handler, typename Char>
FMT_CONSTEXPR float_specs parse_float_type_spec(
    const basic_format_specs<Char>& specs, ErrorHandler&& eh = {}) {
  auto result = float_specs();
  result.showpoint = specs.alt;
  switch (specs.type) {
  case 0:
    result.format = float_format::general;
    result.showpoint |= specs.precision > 0;
    break;
  case 'G':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'g':
    result.format = float_format::general;
    break;
  case 'E':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'e':
    result.format = float_format::exp;
    result.showpoint |= specs.precision != 0;
    break;
  case 'F':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'f':
    result.format = float_format::fixed;
    result.showpoint |= specs.precision != 0;
    break;
  case 'A':
    result.upper = true;
    FMT_FALLTHROUGH;
  case 'a':
    result.format = float_format::hex;
    break;
#ifdef FMT_DEPRECATED_N_SPECIFIER
  case 'n':
#endif
  case 'L':
    result.locale = true;
    break;
  default:
    eh.on_error("invalid type specifier");
    break;
  }
  return result;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR void handle_char_specs(const basic_format_specs<Char>* specs,
                                     Handler&& handler) {
  if (!specs) return handler.on_char();
  if (specs->type && specs->type != 'c') return handler.on_int();
  if (specs->align == align::numeric || specs->sign != sign::none || specs->alt)
    handler.on_error("invalid format specifier for char");
  handler.on_char();
}

template <typename Char, typename Handler>
FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) {
  if (spec == 0 || spec == 's')
    handler.on_string();
  else if (spec == 'p')
    handler.on_pointer();
  else
    handler.on_error("invalid type specifier");
}

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) {
  if (spec != 0 && spec != 's') eh.on_error("invalid type specifier");
}

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) {
  if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier");
}

template <typename ErrorHandler> class int_type_checker : private ErrorHandler {
 public:
  FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {}

  FMT_CONSTEXPR void on_dec() {}
  FMT_CONSTEXPR void on_hex() {}
  FMT_CONSTEXPR void on_bin() {}
  FMT_CONSTEXPR void on_oct() {}
  FMT_CONSTEXPR void on_num() {}
  FMT_CONSTEXPR void on_chr() {}

  FMT_CONSTEXPR void on_error() {
    ErrorHandler::on_error("invalid type specifier");
  }
};

template <typename ErrorHandler>
class char_specs_checker : public ErrorHandler {
 private:
  char type_;

 public:
  FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh)
      : ErrorHandler(eh), type_(type) {}

  FMT_CONSTEXPR void on_int() {
    handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this));
  }
  FMT_CONSTEXPR void on_char() {}
};

template <typename ErrorHandler>
class cstring_type_checker : public ErrorHandler {
 public:
  FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh)
      : ErrorHandler(eh) {}

  FMT_CONSTEXPR void on_string() {}
  FMT_CONSTEXPR void on_pointer() {}
};

template <typename OutputIt, typename Char>
FMT_NOINLINE OutputIt fill(OutputIt it, size_t n, const fill_t<Char>& fill) {
  auto fill_size = fill.size();
  if (fill_size == 1) return std::fill_n(it, n, fill[0]);
  for (size_t i = 0; i < n; ++i) it = std::copy_n(fill.data(), fill_size, it);
  return it;
}

// Writes the output of f, padded according to format specifications in specs.
// size: output size in code units.
// width: output display width in (terminal) column positions.
template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
inline OutputIt write_padded(OutputIt out,
                             const basic_format_specs<Char>& specs, size_t size,
                             size_t width, const F& f) {
  static_assert(align == align::left || align == align::right, "");
  unsigned spec_width = to_unsigned(specs.width);
  size_t padding = spec_width > width ? spec_width - width : 0;
  auto* shifts = align == align::left ? data::left_padding_shifts
                                      : data::right_padding_shifts;
  size_t left_padding = padding >> shifts[specs.align];
  auto it = reserve(out, size + padding * specs.fill.size());
  it = fill(it, left_padding, specs.fill);
  it = f(it);
  it = fill(it, padding - left_padding, specs.fill);
  return base_iterator(out, it);
}

template <align::type align = align::left, typename OutputIt, typename Char,
          typename F>
inline OutputIt write_padded(OutputIt out,
                             const basic_format_specs<Char>& specs, size_t size,
                             const F& f) {
  return write_padded<align>(out, specs, size, size, f);
}

template <typename Char, typename OutputIt>
OutputIt write_bytes(OutputIt out, string_view bytes,
                     const basic_format_specs<Char>& specs) {
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, bytes.size(), [bytes](iterator it) {
    const char* data = bytes.data();
    return copy_str<Char>(data, data + bytes.size(), it);
  });
}

// Data for write_int that doesn't depend on output iterator type. It is used to
// avoid template code bloat.
template <typename Char> struct write_int_data {
  size_t size;
  size_t padding;

  write_int_data(int num_digits, string_view prefix,
                 const basic_format_specs<Char>& specs)
      : size(prefix.size() + to_unsigned(num_digits)), padding(0) {
    if (specs.align == align::numeric) {
      auto width = to_unsigned(specs.width);
      if (width > size) {
        padding = width - size;
        size = width;
      }
    } else if (specs.precision > num_digits) {
      size = prefix.size() + to_unsigned(specs.precision);
      padding = to_unsigned(specs.precision - num_digits);
    }
  }
};

// Writes an integer in the format
//   <left-padding><prefix><numeric-padding><digits><right-padding>
// where <digits> are written by f(it).
template <typename OutputIt, typename Char, typename F>
OutputIt write_int(OutputIt out, int num_digits, string_view prefix,
                   const basic_format_specs<Char>& specs, F f) {
  auto data = write_int_data<Char>(num_digits, prefix, specs);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded<align::right>(out, specs, data.size, [=](iterator it) {
    if (prefix.size() != 0)
      it = copy_str<Char>(prefix.begin(), prefix.end(), it);
    it = std::fill_n(it, data.padding, static_cast<Char>('0'));
    return f(it);
  });
}

template <typename StrChar, typename Char, typename OutputIt>
OutputIt write(OutputIt out, basic_string_view<StrChar> s,
               const basic_format_specs<Char>& specs) {
  auto data = s.data();
  auto size = s.size();
  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
    size = code_point_index(s, to_unsigned(specs.precision));
  auto width = specs.width != 0
                   ? count_code_points(basic_string_view<StrChar>(data, size))
                   : 0;
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, size, width, [=](iterator it) {
    return copy_str<Char>(data, data + size, it);
  });
}

// The handle_int_type_spec handler that writes an integer.
template <typename OutputIt, typename Char, typename UInt> struct int_writer {
  OutputIt out;
  locale_ref locale;
  const basic_format_specs<Char>& specs;
  UInt abs_value;
  char prefix[4];
  unsigned prefix_size;

  using iterator =
      remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;

  string_view get_prefix() const { return string_view(prefix, prefix_size); }

  template <typename Int>
  int_writer(OutputIt output, locale_ref loc, Int value,
             const basic_format_specs<Char>& s)
      : out(output),
        locale(loc),
        specs(s),
        abs_value(static_cast<UInt>(value)),
        prefix_size(0) {
    static_assert(std::is_same<uint32_or_64_or_128_t<Int>, UInt>::value, "");
    if (is_negative(value)) {
      prefix[0] = '-';
      ++prefix_size;
      abs_value = 0 - abs_value;
    } else if (specs.sign != sign::none && specs.sign != sign::minus) {
      prefix[0] = specs.sign == sign::plus ? '+' : ' ';
      ++prefix_size;
    }
  }

  void on_dec() {
    auto num_digits = count_digits(abs_value);
    out = write_int(
        out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) {
          return format_decimal<Char>(it, abs_value, num_digits).end;
        });
  }

  void on_hex() {
    if (specs.alt) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = specs.type;
    }
    int num_digits = count_digits<4>(abs_value);
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<4, Char>(it, abs_value, num_digits,
                                                  specs.type != 'x');
                    });
  }

  void on_bin() {
    if (specs.alt) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = static_cast<char>(specs.type);
    }
    int num_digits = count_digits<1>(abs_value);
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<1, Char>(it, abs_value, num_digits);
                    });
  }

  void on_oct() {
    int num_digits = count_digits<3>(abs_value);
    if (specs.alt && specs.precision <= num_digits && abs_value != 0) {
      // Octal prefix '0' is counted as a digit, so only add it if precision
      // is not greater than the number of digits.
      prefix[prefix_size++] = '0';
    }
    out = write_int(out, num_digits, get_prefix(), specs,
                    [this, num_digits](iterator it) {
                      return format_uint<3, Char>(it, abs_value, num_digits);
                    });
  }

  enum { sep_size = 1 };

  void on_num() {
    std::string groups = grouping<Char>(locale);
    if (groups.empty()) return on_dec();
    auto sep = thousands_sep<Char>(locale);
    if (!sep) return on_dec();
    int num_digits = count_digits(abs_value);
    int size = num_digits, n = num_digits;
    std::string::const_iterator group = groups.cbegin();
    while (group != groups.cend() && n > *group && *group > 0 &&
           *group != max_value<char>()) {
      size += sep_size;
      n -= *group;
      ++group;
    }
    if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back());
    char digits[40];
    format_decimal(digits, abs_value, num_digits);
    basic_memory_buffer<Char> buffer;
    size += prefix_size;
    buffer.resize(size);
    basic_string_view<Char> s(&sep, sep_size);
    // Index of a decimal digit with the least significant digit having index 0.
    int digit_index = 0;
    group = groups.cbegin();
    auto p = buffer.data() + size;
    for (int i = num_digits - 1; i >= 0; --i) {
      *--p = static_cast<Char>(digits[i]);
      if (*group <= 0 || ++digit_index % *group != 0 ||
          *group == max_value<char>())
        continue;
      if (group + 1 != groups.cend()) {
        digit_index = 0;
        ++group;
      }
      p -= s.size();
      std::uninitialized_copy(s.data(), s.data() + s.size(),
                              make_checked(p, s.size()));
    }
    if (prefix_size != 0) p[-1] = static_cast<Char>('-');
    using iterator = remove_reference_t<decltype(reserve(out, 0))>;
    auto data = buffer.data();
    out = write_padded<align::right>(out, specs, size, size, [=](iterator it) {
      return copy_str<Char>(data, data + size, it);
    });
  }

  void on_chr() { *out++ = static_cast<Char>(abs_value); }

  FMT_NORETURN void on_error() {
    FMT_THROW(format_error("invalid type specifier"));
  }
};

template <typename Char, typename OutputIt>
OutputIt write_nonfinite(OutputIt out, bool isinf,
                         const basic_format_specs<Char>& specs,
                         const float_specs& fspecs) {
  auto str =
      isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan");
  constexpr size_t str_size = 3;
  auto sign = fspecs.sign;
  auto size = str_size + (sign ? 1 : 0);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, size, [=](iterator it) {
    if (sign) *it++ = static_cast<Char>(data::signs[sign]);
    return copy_str<Char>(str, str + str_size, it);
  });
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value)>
OutputIt write(OutputIt out, T value, basic_format_specs<Char> specs,
               locale_ref loc = {}) {
  if (const_check(!is_supported_floating_point(value))) return out;
  float_specs fspecs = parse_float_type_spec(specs);
  fspecs.sign = specs.sign;
  if (std::signbit(value)) {  // value < 0 is false for NaN so use signbit.
    fspecs.sign = sign::minus;
    value = -value;
  } else if (fspecs.sign == sign::minus) {
    fspecs.sign = sign::none;
  }

  if (!std::isfinite(value))
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  if (specs.align == align::numeric && fspecs.sign) {
    auto it = reserve(out, 1);
    *it++ = static_cast<Char>(data::signs[fspecs.sign]);
    out = base_iterator(out, it);
    fspecs.sign = sign::none;
    if (specs.width != 0) --specs.width;
  }

  memory_buffer buffer;
  if (fspecs.format == float_format::hex) {
    if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]);
    snprintf_float(promote_float(value), specs.precision, fspecs, buffer);
    return write_bytes(out, {buffer.data(), buffer.size()}, specs);
  }
  int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6;
  if (fspecs.format == float_format::exp) {
    if (precision == max_value<int>())
      FMT_THROW(format_error("number is too big"));
    else
      ++precision;
  }
  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
  fspecs.use_grisu = use_grisu<T>();
  int exp = format_float(promote_float(value), precision, fspecs, buffer);
  fspecs.precision = precision;
  Char point =
      fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.');
  float_writer<Char> w(buffer.data(), static_cast<int>(buffer.size()), exp,
                       fspecs, point);
  return write_padded<align::right>(out, specs, w.size(), w);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(std::is_floating_point<T>::value)>
OutputIt write(OutputIt out, T value) {
  if (const_check(!is_supported_floating_point(value))) return out;
  auto fspecs = float_specs();
  if (std::signbit(value)) {  // value < 0 is false for NaN so use signbit.
    fspecs.sign = sign::minus;
    value = -value;
  }

  auto specs = basic_format_specs<Char>();
  if (!std::isfinite(value))
    return write_nonfinite(out, std::isinf(value), specs, fspecs);

  memory_buffer buffer;
  int precision = -1;
  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
  fspecs.use_grisu = use_grisu<T>();
  int exp = format_float(promote_float(value), precision, fspecs, buffer);
  fspecs.precision = precision;
  float_writer<Char> w(buffer.data(), static_cast<int>(buffer.size()), exp,
                       fspecs, static_cast<Char>('.'));
  return base_iterator(out, w(reserve(out, w.size())));
}

template <typename Char, typename OutputIt>
OutputIt write_char(OutputIt out, Char value,
                    const basic_format_specs<Char>& specs) {
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  return write_padded(out, specs, 1, [=](iterator it) {
    *it++ = value;
    return it;
  });
}

template <typename Char, typename OutputIt, typename UIntPtr>
OutputIt write_ptr(OutputIt out, UIntPtr value,
                   const basic_format_specs<Char>* specs) {
  int num_digits = count_digits<4>(value);
  auto size = to_unsigned(num_digits) + size_t(2);
  using iterator = remove_reference_t<decltype(reserve(out, 0))>;
  auto write = [=](iterator it) {
    *it++ = static_cast<Char>('0');
    *it++ = static_cast<Char>('x');
    return format_uint<4, Char>(it, value, num_digits);
  };
  return specs ? write_padded<align::right>(out, *specs, size, write)
               : base_iterator(out, write(reserve(out, size)));
}

template <typename T> struct is_integral : std::is_integral<T> {};
template <> struct is_integral<int128_t> : std::true_type {};
template <> struct is_integral<uint128_t> : std::true_type {};

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, monostate) {
  FMT_ASSERT(false, "");
  return out;
}

template <typename Char, typename OutputIt,
          FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
OutputIt write(OutputIt out, string_view value) {
  auto it = reserve(out, value.size());
  it = copy_str<Char>(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, basic_string_view<Char> value) {
  auto it = reserve(out, value.size());
  it = std::copy(value.begin(), value.end(), it);
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt, typename T,
          FMT_ENABLE_IF(is_integral<T>::value &&
                        !std::is_same<T, bool>::value &&
                        !std::is_same<T, Char>::value)>
OutputIt write(OutputIt out, T value) {
  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
  bool negative = is_negative(value);
  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
  if (negative) abs_value = ~abs_value + 1;
  int num_digits = count_digits(abs_value);
  auto it = reserve(out, (negative ? 1 : 0) + static_cast<size_t>(num_digits));
  if (negative) *it++ = static_cast<Char>('-');
  it = format_decimal<Char>(it, abs_value, num_digits).end;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, bool value) {
  return write<Char>(out, string_view(value ? "true" : "false"));
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, Char value) {
  auto it = reserve(out, 1);
  *it++ = value;
  return base_iterator(out, it);
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, const Char* value) {
  if (!value) {
    FMT_THROW(format_error("string pointer is null"));
  } else {
    auto length = std::char_traits<Char>::length(value);
    out = write(out, basic_string_view<Char>(value, length));
  }
  return out;
}

template <typename Char, typename OutputIt>
OutputIt write(OutputIt out, const void* value) {
  return write_ptr<Char>(out, to_uintptr(value), nullptr);
}

template <typename Char, typename OutputIt, typename T>
auto write(OutputIt out, const T& value) -> typename std::enable_if<
    mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value ==
        type::custom_type,
    OutputIt>::type {
  basic_format_context<OutputIt, Char> ctx(out, {}, {});
  return formatter<T>().format(value, ctx);
}

// An argument visitor that formats the argument and writes it via the output
// iterator. It's a class and not a generic lambda for compatibility with C++11.
template <typename OutputIt, typename Char> struct default_arg_formatter {
  using context = basic_format_context<OutputIt, Char>;

  OutputIt out;
  basic_format_args<context> args;
  locale_ref loc;

  template <typename T> OutputIt operator()(T value) {
    return write<Char>(out, value);
  }

  OutputIt operator()(typename basic_format_arg<context>::handle handle) {
    basic_format_parse_context<Char> parse_ctx({});
    basic_format_context<OutputIt, Char> format_ctx(out, args, loc);
    handle.format(parse_ctx, format_ctx);
    return format_ctx.out();
  }
};

template <typename OutputIt, typename Char,
          typename ErrorHandler = error_handler>
class arg_formatter_base {
 public:
  using iterator = OutputIt;
  using char_type = Char;
  using format_specs = basic_format_specs<Char>;

 private:
  iterator out_;
  locale_ref locale_;
  format_specs* specs_;

  // Attempts to reserve space for n extra characters in the output range.
  // Returns a pointer to the reserved range or a reference to out_.
  auto reserve(size_t n) -> decltype(detail::reserve(out_, n)) {
    return detail::reserve(out_, n);
  }

  using reserve_iterator = remove_reference_t<decltype(
      detail::reserve(std::declval<iterator&>(), 0))>;

  template <typename T> void write_int(T value, const format_specs& spec) {
    using uint_type = uint32_or_64_or_128_t<T>;
    int_writer<iterator, Char, uint_type> w(out_, locale_, value, spec);
    handle_int_type_spec(spec.type, w);
    out_ = w.out;
  }

  void write(char value) {
    auto&& it = reserve(1);
    *it++ = value;
  }

  template <typename Ch, FMT_ENABLE_IF(std::is_same<Ch, Char>::value)>
  void write(Ch value) {
    out_ = detail::write<Char>(out_, value);
  }

  void write(string_view value) {
    auto&& it = reserve(value.size());
    it = copy_str<Char>(value.begin(), value.end(), it);
  }
  void write(wstring_view value) {
    static_assert(std::is_same<Char, wchar_t>::value, "");
    auto&& it = reserve(value.size());
    it = std::copy(value.begin(), value.end(), it);
  }

  template <typename Ch>
  void write(const Ch* s, size_t size, const format_specs& specs) {
    auto width = specs.width != 0
                     ? count_code_points(basic_string_view<Ch>(s, size))
                     : 0;
    out_ = write_padded(out_, specs, size, width, [=](reserve_iterator it) {
      return copy_str<Char>(s, s + size, it);
    });
  }

  template <typename Ch>
  void write(basic_string_view<Ch> s, const format_specs& specs = {}) {
    out_ = detail::write(out_, s, specs);
  }

  void write_pointer(const void* p) {
    out_ = write_ptr<char_type>(out_, to_uintptr(p), specs_);
  }

  struct char_spec_handler : ErrorHandler {
    arg_formatter_base& formatter;
    Char value;

    char_spec_handler(arg_formatter_base& f, Char val)
        : formatter(f), value(val) {}

    void on_int() {
      // char is only formatted as int if there are specs.
      formatter.write_int(static_cast<int>(value), *formatter.specs_);
    }
    void on_char() {
      if (formatter.specs_)
        formatter.out_ = write_char(formatter.out_, value, *formatter.specs_);
      else
        formatter.write(value);
    }
  };

  struct cstring_spec_handler : error_handler {
    arg_formatter_base& formatter;
    const Char* value;

    cstring_spec_handler(arg_formatter_base& f, const Char* val)
        : formatter(f), value(val) {}

    void on_string() { formatter.write(value); }
    void on_pointer() { formatter.write_pointer(value); }
  };

 protected:
  iterator out() { return out_; }
  format_specs* specs() { return specs_; }

  void write(bool value) {
    if (specs_)
      write(string_view(value ? "true" : "false"), *specs_);
    else
      out_ = detail::write<Char>(out_, value);
  }

  void write(const Char* value) {
    if (!value) {
      FMT_THROW(format_error("string pointer is null"));
    } else {
      auto length = std::char_traits<char_type>::length(value);
      basic_string_view<char_type> sv(value, length);
      specs_ ? write(sv, *specs_) : write(sv);
    }
  }

 public:
  arg_formatter_base(OutputIt out, format_specs* s, locale_ref loc)
      : out_(out), locale_(loc), specs_(s) {}

  iterator operator()(monostate) {
    FMT_ASSERT(false, "invalid argument type");
    return out_;
  }

  template <typename T, FMT_ENABLE_IF(is_integral<T>::value)>
  FMT_INLINE iterator operator()(T value) {
    if (specs_)
      write_int(value, *specs_);
    else
      out_ = detail::write<Char>(out_, value);
    return out_;
  }

  iterator operator()(Char value) {
    handle_char_specs(specs_,
                      char_spec_handler(*this, static_cast<Char>(value)));
    return out_;
  }

  iterator operator()(bool value) {
    if (specs_ && specs_->type) return (*this)(value ? 1 : 0);
    write(value != 0);
    return out_;
  }

  template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
  iterator operator()(T value) {
    auto specs = specs_ ? *specs_ : format_specs();
    if (const_check(is_supported_floating_point(value)))
      out_ = detail::write(out_, value, specs, locale_);
    else
      FMT_ASSERT(false, "unsupported float argument type");
    return out_;
  }

  iterator operator()(const Char* value) {
    if (!specs_) return write(value), out_;
    handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value));
    return out_;
  }

  iterator operator()(basic_string_view<Char> value) {
    if (specs_) {
      check_string_type_spec(specs_->type, error_handler());
      write(value, *specs_);
    } else {
      write(value);
    }
    return out_;
  }

  iterator operator()(const void* value) {
    if (specs_) check_pointer_type_spec(specs_->type, error_handler());
    write_pointer(value);
    return out_;
  }
};

template <typename Char> FMT_CONSTEXPR bool is_name_start(Char c) {
  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c;
}

// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end,
                                        ErrorHandler&& eh) {
  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
  unsigned value = 0;
  // Convert to unsigned to prevent a warning.
  constexpr unsigned max_int = max_value<int>();
  unsigned big = max_int / 10;
  do {
    // Check for overflow.
    if (value > big) {
      value = max_int + 1;
      break;
    }
    value = value * 10 + unsigned(*begin - '0');
    ++begin;
  } while (begin != end && '0' <= *begin && *begin <= '9');
  if (value > max_int) eh.on_error("number is too big");
  return static_cast<int>(value);
}

template <typename Context> class custom_formatter {
 private:
  using char_type = typename Context::char_type;

  basic_format_parse_context<char_type>& parse_ctx_;
  Context& ctx_;

 public:
  explicit custom_formatter(basic_format_parse_context<char_type>& parse_ctx,
                            Context& ctx)
      : parse_ctx_(parse_ctx), ctx_(ctx) {}

  bool operator()(typename basic_format_arg<Context>::handle h) const {
    h.format(parse_ctx_, ctx_);
    return true;
  }

  template <typename T> bool operator()(T) const { return false; }
};

template <typename T>
using is_integer =
    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
                  !std::is_same<T, char>::value &&
                  !std::is_same<T, wchar_t>::value>;

template <typename ErrorHandler> class width_checker {
 public:
  explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T value) {
    if (is_negative(value)) handler_.on_error("negative width");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T) {
    handler_.on_error("width is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

template <typename ErrorHandler> class precision_checker {
 public:
  explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}

  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T value) {
    if (is_negative(value)) handler_.on_error("negative precision");
    return static_cast<unsigned long long>(value);
  }

  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
  FMT_CONSTEXPR unsigned long long operator()(T) {
    handler_.on_error("precision is not integer");
    return 0;
  }

 private:
  ErrorHandler& handler_;
};

// A format specifier handler that sets fields in basic_format_specs.
template <typename Char> class specs_setter {
 public:
  explicit FMT_CONSTEXPR specs_setter(basic_format_specs<Char>& specs)
      : specs_(specs) {}

  FMT_CONSTEXPR specs_setter(const specs_setter& other)
      : specs_(other.specs_) {}

  FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; }
  FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) {
    specs_.fill = fill;
  }
  FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; }
  FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; }
  FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; }
  FMT_CONSTEXPR void on_hash() { specs_.alt = true; }

  FMT_CONSTEXPR void on_zero() {
    specs_.align = align::numeric;
    specs_.fill[0] = Char('0');
  }

  FMT_CONSTEXPR void on_width(int width) { specs_.width = width; }
  FMT_CONSTEXPR void on_precision(int precision) {
    specs_.precision = precision;
  }
  FMT_CONSTEXPR void end_precision() {}

  FMT_CONSTEXPR void on_type(Char type) {
    specs_.type = static_cast<char>(type);
  }

 protected:
  basic_format_specs<Char>& specs_;
};

template <typename ErrorHandler> class numeric_specs_checker {
 public:
  FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, detail::type arg_type)
      : error_handler_(eh), arg_type_(arg_type) {}

  FMT_CONSTEXPR void require_numeric_argument() {
    if (!is_arithmetic_type(arg_type_))
      error_handler_.on_error("format specifier requires numeric argument");
  }

  FMT_CONSTEXPR void check_sign() {
    require_numeric_argument();
    if (is_integral_type(arg_type_) && arg_type_ != type::int_type &&
        arg_type_ != type::long_long_type && arg_type_ != type::char_type) {
      error_handler_.on_error("format specifier requires signed argument");
    }
  }

  FMT_CONSTEXPR void check_precision() {
    if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type)
      error_handler_.on_error("precision not allowed for this argument type");
  }

 private:
  ErrorHandler& error_handler_;
  detail::type arg_type_;
};

// A format specifier handler that checks if specifiers are consistent with the
// argument type.
template <typename Handler> class specs_checker : public Handler {
 private:
  numeric_specs_checker<Handler> checker_;

  // Suppress an MSVC warning about using this in initializer list.
  FMT_CONSTEXPR Handler& error_handler() { return *this; }

 public:
  FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type)
      : Handler(handler), checker_(error_handler(), arg_type) {}

  FMT_CONSTEXPR specs_checker(const specs_checker& other)
      : Handler(other), checker_(error_handler(), other.arg_type_) {}

  FMT_CONSTEXPR void on_align(align_t align) {
    if (align == align::numeric) checker_.require_numeric_argument();
    Handler::on_align(align);
  }

  FMT_CONSTEXPR void on_plus() {
    checker_.check_sign();
    Handler::on_plus();
  }

  FMT_CONSTEXPR void on_minus() {
    checker_.check_sign();
    Handler::on_minus();
  }

  FMT_CONSTEXPR void on_space() {
    checker_.check_sign();
    Handler::on_space();
  }

  FMT_CONSTEXPR void on_hash() {
    checker_.require_numeric_argument();
    Handler::on_hash();
  }

  FMT_CONSTEXPR void on_zero() {
    checker_.require_numeric_argument();
    Handler::on_zero();
  }

  FMT_CONSTEXPR void end_precision() { checker_.check_precision(); }
};

template <template <typename> class Handler, typename FormatArg,
          typename ErrorHandler>
FMT_CONSTEXPR int get_dynamic_spec(FormatArg arg, ErrorHandler eh) {
  unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
  if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
  return static_cast<int>(value);
}

struct auto_id {};

template <typename Context, typename ID>
FMT_CONSTEXPR typename Context::format_arg get_arg(Context& ctx, ID id) {
  auto arg = ctx.arg(id);
  if (!arg) ctx.on_error("argument not found");
  return arg;
}

// The standard format specifier handler with checking.
template <typename ParseContext, typename Context>
class specs_handler : public specs_setter<typename Context::char_type> {
 public:
  using char_type = typename Context::char_type;

  FMT_CONSTEXPR specs_handler(basic_format_specs<char_type>& specs,
                              ParseContext& parse_ctx, Context& ctx)
      : specs_setter<char_type>(specs),
        parse_context_(parse_ctx),
        context_(ctx) {}

  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
    this->specs_.width = get_dynamic_spec<width_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
    this->specs_.precision = get_dynamic_spec<precision_checker>(
        get_arg(arg_id), context_.error_handler());
  }

  void on_error(const char* message) { context_.on_error(message); }

 private:
  // This is only needed for compatibility with gcc 4.4.
  using format_arg = typename Context::format_arg;

  FMT_CONSTEXPR format_arg get_arg(auto_id) {
    return detail::get_arg(context_, parse_context_.next_arg_id());
  }

  FMT_CONSTEXPR format_arg get_arg(int arg_id) {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

  FMT_CONSTEXPR format_arg get_arg(basic_string_view<char_type> arg_id) {
    parse_context_.check_arg_id(arg_id);
    return detail::get_arg(context_, arg_id);
  }

  ParseContext& parse_context_;
  Context& context_;
};

enum class arg_id_kind { none, index, name };

// An argument reference.
template <typename Char> struct arg_ref {
  FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}

  FMT_CONSTEXPR explicit arg_ref(int index)
      : kind(arg_id_kind::index), val(index) {}
  FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
      : kind(arg_id_kind::name), val(name) {}

  FMT_CONSTEXPR arg_ref& operator=(int idx) {
    kind = arg_id_kind::index;
    val.index = idx;
    return *this;
  }

  arg_id_kind kind;
  union value {
    FMT_CONSTEXPR value(int id = 0) : index{id} {}
    FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}

    int index;
    basic_string_view<Char> name;
  } val;
};

// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow re-using the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char>
struct dynamic_format_specs : basic_format_specs<Char> {
  arg_ref<Char> width_ref;
  arg_ref<Char> precision_ref;
};

// Format spec handler that saves references to arguments representing dynamic
// width and precision to be resolved at formatting time.
template <typename ParseContext>
class dynamic_specs_handler
    : public specs_setter<typename ParseContext::char_type> {
 public:
  using char_type = typename ParseContext::char_type;

  FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs<char_type>& specs,
                                      ParseContext& ctx)
      : specs_setter<char_type>(specs), specs_(specs), context_(ctx) {}

  FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other)
      : specs_setter<char_type>(other),
        specs_(other.specs_),
        context_(other.context_) {}

  template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
    specs_.width_ref = make_arg_ref(arg_id);
  }

  template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
    specs_.precision_ref = make_arg_ref(arg_id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    context_.on_error(message);
  }

 private:
  using arg_ref_type = arg_ref<char_type>;

  FMT_CONSTEXPR arg_ref_type make_arg_ref(int arg_id) {
    context_.check_arg_id(arg_id);
    return arg_ref_type(arg_id);
  }

  FMT_CONSTEXPR arg_ref_type make_arg_ref(auto_id) {
    return arg_ref_type(context_.next_arg_id());
  }

  FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<char_type> arg_id) {
    context_.check_arg_id(arg_id);
    basic_string_view<char_type> format_str(
        context_.begin(), to_unsigned(context_.end() - context_.begin()));
    return arg_ref_type(arg_id);
  }

  dynamic_format_specs<char_type>& specs_;
  ParseContext& context_;
};

template <typename Char, typename IDHandler>
FMT_CONSTEXPR const Char* parse_arg_id(const Char* begin, const Char* end,
                                       IDHandler&& handler) {
  FMT_ASSERT(begin != end, "");
  Char c = *begin;
  if (c == '}' || c == ':') {
    handler();
    return begin;
  }
  if (c >= '0' && c <= '9') {
    int index = 0;
    if (c != '0')
      index = parse_nonnegative_int(begin, end, handler);
    else
      ++begin;
    if (begin == end || (*begin != '}' && *begin != ':'))
      handler.on_error("invalid format string");
    else
      handler(index);
    return begin;
  }
  if (!is_name_start(c)) {
    handler.on_error("invalid format string");
    return begin;
  }
  auto it = begin;
  do {
    ++it;
  } while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9')));
  handler(basic_string_view<Char>(begin, to_unsigned(it - begin)));
  return it;
}

// Adapts SpecHandler to IDHandler API for dynamic width.
template <typename SpecHandler, typename Char> struct width_adapter {
  explicit FMT_CONSTEXPR width_adapter(SpecHandler& h) : handler(h) {}

  FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); }
  FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    handler.on_dynamic_width(id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }

  SpecHandler& handler;
};

// Adapts SpecHandler to IDHandler API for dynamic precision.
template <typename SpecHandler, typename Char> struct precision_adapter {
  explicit FMT_CONSTEXPR precision_adapter(SpecHandler& h) : handler(h) {}

  FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); }
  FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    handler.on_dynamic_precision(id);
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }

  SpecHandler& handler;
};

template <typename Char>
FMT_CONSTEXPR const Char* next_code_point(const Char* begin, const Char* end) {
  if (const_check(sizeof(Char) != 1) || (*begin & 0x80) == 0) return begin + 1;
  do {
    ++begin;
  } while (begin != end && (*begin & 0xc0) == 0x80);
  return begin;
}

// Parses fill and alignment.
template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_align(const Char* begin, const Char* end,
                                      Handler&& handler) {
  FMT_ASSERT(begin != end, "");
  auto align = align::none;
  auto p = next_code_point(begin, end);
  if (p == end) p = begin;
  for (;;) {
    switch (static_cast<char>(*p)) {
    case '<':
      align = align::left;
      break;
    case '>':
      align = align::right;
      break;
#if FMT_DEPRECATED_NUMERIC_ALIGN
    case '=':
      align = align::numeric;
      break;
#endif
    case '^':
      align = align::center;
      break;
    }
    if (align != align::none) {
      if (p != begin) {
        auto c = *begin;
        if (c == '{')
          return handler.on_error("invalid fill character '{'"), begin;
        handler.on_fill(basic_string_view<Char>(begin, to_unsigned(p - begin)));
        begin = p + 1;
      } else
        ++begin;
      handler.on_align(align);
      break;
    } else if (p == begin) {
      break;
    }
    p = begin;
  }
  return begin;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_width(const Char* begin, const Char* end,
                                      Handler&& handler) {
  FMT_ASSERT(begin != end, "");
  if ('0' <= *begin && *begin <= '9') {
    handler.on_width(parse_nonnegative_int(begin, end, handler));
  } else if (*begin == '{') {
    ++begin;
    if (begin != end)
      begin = parse_arg_id(begin, end, width_adapter<Handler, Char>(handler));
    if (begin == end || *begin != '}')
      return handler.on_error("invalid format string"), begin;
    ++begin;
  }
  return begin;
}

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_precision(const Char* begin, const Char* end,
                                          Handler&& handler) {
  ++begin;
  auto c = begin != end ? *begin : Char();
  if ('0' <= c && c <= '9') {
    handler.on_precision(parse_nonnegative_int(begin, end, handler));
  } else if (c == '{') {
    ++begin;
    if (begin != end) {
      begin =
          parse_arg_id(begin, end, precision_adapter<Handler, Char>(handler));
    }
    if (begin == end || *begin++ != '}')
      return handler.on_error("invalid format string"), begin;
  } else {
    return handler.on_error("missing precision specifier"), begin;
  }
  handler.end_precision();
  return begin;
}

// Parses standard format specifiers and sends notifications about parsed
// components to handler.
template <typename Char, typename SpecHandler>
FMT_CONSTEXPR const Char* parse_format_specs(const Char* begin, const Char* end,
                                             SpecHandler&& handler) {
  if (begin == end || *begin == '}') return begin;

  begin = parse_align(begin, end, handler);
  if (begin == end) return begin;

  // Parse sign.
  switch (static_cast<char>(*begin)) {
  case '+':
    handler.on_plus();
    ++begin;
    break;
  case '-':
    handler.on_minus();
    ++begin;
    break;
  case ' ':
    handler.on_space();
    ++begin;
    break;
  }
  if (begin == end) return begin;

  if (*begin == '#') {
    handler.on_hash();
    if (++begin == end) return begin;
  }

  // Parse zero flag.
  if (*begin == '0') {
    handler.on_zero();
    if (++begin == end) return begin;
  }

  begin = parse_width(begin, end, handler);
  if (begin == end) return begin;

  // Parse precision.
  if (*begin == '.') {
    begin = parse_precision(begin, end, handler);
  }

  // Parse type.
  if (begin != end && *begin != '}') handler.on_type(*begin++);
  return begin;
}

// Return the result via the out param to workaround gcc bug 77539.
template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
FMT_CONSTEXPR bool find(Ptr first, Ptr last, T value, Ptr& out) {
  for (out = first; out != last; ++out) {
    if (*out == value) return true;
  }
  return false;
}

template <>
inline bool find<false, char>(const char* first, const char* last, char value,
                              const char*& out) {
  out = static_cast<const char*>(
      std::memchr(first, value, detail::to_unsigned(last - first)));
  return out != nullptr;
}

template <typename Handler, typename Char> struct id_adapter {
  Handler& handler;
  int arg_id;

  FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); }
  FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); }
  FMT_CONSTEXPR void operator()(basic_string_view<Char> id) {
    arg_id = handler.on_arg_id(id);
  }
  FMT_CONSTEXPR void on_error(const char* message) {
    handler.on_error(message);
  }
};

template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_replacement_field(const Char* begin,
                                                  const Char* end,
                                                  Handler&& handler) {
  ++begin;
  if (begin == end) return handler.on_error("invalid format string"), end;
  if (static_cast<char>(*begin) == '}') {
    handler.on_replacement_field(handler.on_arg_id(), begin);
  } else if (*begin == '{') {
    handler.on_text(begin, begin + 1);
  } else {
    auto adapter = id_adapter<Handler, Char>{handler, 0};
    begin = parse_arg_id(begin, end, adapter);
    Char c = begin != end ? *begin : Char();
    if (c == '}') {
      handler.on_replacement_field(adapter.arg_id, begin);
    } else if (c == ':') {
      begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
      if (begin == end || *begin != '}')
        return handler.on_error("unknown format specifier"), end;
    } else {
      return handler.on_error("missing '}' in format string"), end;
    }
  }
  return begin + 1;
}

template <bool IS_CONSTEXPR, typename Char, typename Handler>
FMT_CONSTEXPR_DECL FMT_INLINE void parse_format_string(
    basic_string_view<Char> format_str, Handler&& handler) {
  auto begin = format_str.data();
  auto end = begin + format_str.size();
  if (end - begin < 32) {
    // Use a simple loop instead of memchr for small strings.
    const Char* p = begin;
    while (p != end) {
      auto c = *p++;
      if (c == '{') {
        handler.on_text(begin, p - 1);
        begin = p = parse_replacement_field(p - 1, end, handler);
      } else if (c == '}') {
        if (p == end || *p != '}')
          return handler.on_error("unmatched '}' in format string");
        handler.on_text(begin, p);
        begin = ++p;
      }
    }
    handler.on_text(begin, end);
    return;
  }
  struct writer {
    FMT_CONSTEXPR void operator()(const Char* begin, const Char* end) {
      if (begin == end) return;
      for (;;) {
        const Char* p = nullptr;
        if (!find<IS_CONSTEXPR>(begin, end, '}', p))
          return handler_.on_text(begin, end);
        ++p;
        if (p == end || *p != '}')
          return handler_.on_error("unmatched '}' in format string");
        handler_.on_text(begin, p);
        begin = p + 1;
      }
    }
    Handler& handler_;
  } write{handler};
  while (begin != end) {
    // Doing two passes with memchr (one for '{' and another for '}') is up to
    // 2.5x faster than the naive one-pass implementation on big format strings.
    const Char* p = begin;
    if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, '{', p))
      return write(begin, end);
    write(begin, p);
    begin = parse_replacement_field(p, end, handler);
  }
}

template <typename T, typename ParseContext>
FMT_CONSTEXPR const typename ParseContext::char_type* parse_format_specs(
    ParseContext& ctx) {
  using char_type = typename ParseContext::char_type;
  using context = buffer_context<char_type>;
  using mapped_type =
      conditional_t<detail::mapped_type_constant<T, context>::value !=
                        type::custom_type,
                    decltype(arg_mapper<context>().map(std::declval<T>())), T>;
  auto f = conditional_t<has_formatter<mapped_type, context>::value,
                         formatter<mapped_type, char_type>,
                         detail::fallback_formatter<T, char_type>>();
  return f.parse(ctx);
}

template <typename ArgFormatter, typename Char, typename Context>
struct format_handler : detail::error_handler {
  basic_format_parse_context<Char> parse_context;
  Context context;

  format_handler(typename ArgFormatter::iterator out,
                 basic_string_view<Char> str,
                 basic_format_args<Context> format_args, detail::locale_ref loc)
      : parse_context(str), context(out, format_args, loc) {}

  void on_text(const Char* begin, const Char* end) {
    auto size = to_unsigned(end - begin);
    auto out = context.out();
    auto&& it = reserve(out, size);
    it = std::copy_n(begin, size, it);
    context.advance_to(out);
  }

  int on_arg_id() { return parse_context.next_arg_id(); }
  int on_arg_id(int id) { return parse_context.check_arg_id(id), id; }
  int on_arg_id(basic_string_view<Char> id) {
    int arg_id = context.arg_id(id);
    if (arg_id < 0) on_error("argument not found");
    return arg_id;
  }

  FMT_INLINE void on_replacement_field(int id, const Char*) {
    auto arg = get_arg(context, id);
    context.advance_to(visit_format_arg(
        default_arg_formatter<typename ArgFormatter::iterator, Char>{
            context.out(), context.args(), context.locale()},
        arg));
  }

  const Char* on_format_specs(int id, const Char* begin, const Char* end) {
    advance_to(parse_context, begin);
    auto arg = get_arg(context, id);
    custom_formatter<Context> f(parse_context, context);
    if (visit_format_arg(f, arg)) return parse_context.begin();
    basic_format_specs<Char> specs;
    using parse_context_t = basic_format_parse_context<Char>;
    specs_checker<specs_handler<parse_context_t, Context>> handler(
        specs_handler<parse_context_t, Context>(specs, parse_context, context),
        arg.type());
    begin = parse_format_specs(begin, end, handler);
    if (begin == end || *begin != '}') on_error("missing '}' in format string");
    advance_to(parse_context, begin);
    context.advance_to(
        visit_format_arg(ArgFormatter(context, &parse_context, &specs), arg));
    return begin;
  }
};

// A parse context with extra argument id checks. It is only used at compile
// time because adding checks at runtime would introduce substantial overhead
// and would be redundant since argument ids are checked when arguments are
// retrieved anyway.
template <typename Char, typename ErrorHandler = error_handler>
class compile_parse_context
    : public basic_format_parse_context<Char, ErrorHandler> {
 private:
  int num_args_;
  using base = basic_format_parse_context<Char, ErrorHandler>;

 public:
  explicit FMT_CONSTEXPR compile_parse_context(
      basic_string_view<Char> format_str, int num_args = max_value<int>(),
      ErrorHandler eh = {})
      : base(format_str, eh), num_args_(num_args) {}

  FMT_CONSTEXPR int next_arg_id() {
    int id = base::next_arg_id();
    if (id >= num_args_) this->on_error("argument not found");
    return id;
  }

  FMT_CONSTEXPR void check_arg_id(int id) {
    base::check_arg_id(id);
    if (id >= num_args_) this->on_error("argument not found");
  }
  using base::check_arg_id;
};

template <typename Char, typename ErrorHandler, typename... Args>
class format_string_checker {
 public:
  explicit FMT_CONSTEXPR format_string_checker(
      basic_string_view<Char> format_str, ErrorHandler eh)
      : context_(format_str, num_args, eh),
        parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}

  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}

  FMT_CONSTEXPR int on_arg_id() { return context_.next_arg_id(); }
  FMT_CONSTEXPR int on_arg_id(int id) { return context_.check_arg_id(id), id; }
  FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) {
    on_error("compile-time checks don't support named arguments");
    return 0;
  }

  FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}

  FMT_CONSTEXPR const Char* on_format_specs(int id, const Char* begin,
                                            const Char*) {
    advance_to(context_, begin);
    return id < num_args ? parse_funcs_[id](context_) : begin;
  }

  FMT_CONSTEXPR void on_error(const char* message) {
    context_.on_error(message);
  }

 private:
  using parse_context_type = compile_parse_context<Char, ErrorHandler>;
  enum { num_args = sizeof...(Args) };

  // Format specifier parsing function.
  using parse_func = const Char* (*)(parse_context_type&);

  parse_context_type context_;
  parse_func parse_funcs_[num_args > 0 ? num_args : 1];
};

// Converts string literals to basic_string_view.
template <typename Char, size_t N>
FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view(
    const Char (&s)[N]) {
  // Remove trailing null character if needed. Won't be present if this is used
  // with raw character array (i.e. not defined as a string).
  return {s,
          N - ((std::char_traits<Char>::to_int_type(s[N - 1]) == 0) ? 1 : 0)};
}

// Converts string_view to basic_string_view.
template <typename Char>
FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view(
    const std_string_view<Char>& s) {
  return {s.data(), s.size()};
}

#define FMT_STRING_IMPL(s, base)                                  \
  [] {                                                            \
    /* Use a macro-like name to avoid shadowing warnings. */      \
    struct FMT_COMPILE_STRING : base {                            \
      using char_type = fmt::remove_cvref_t<decltype(s[0])>;      \
      FMT_MAYBE_UNUSED FMT_CONSTEXPR                              \
      operator fmt::basic_string_view<char_type>() const {        \
        return fmt::detail::compile_string_to_view<char_type>(s); \
      }                                                           \
    };                                                            \
    return FMT_COMPILE_STRING();                                  \
  }()

/**
  \rst
  Constructs a compile-time format string from a string literal *s*.

  **Example**::

    // A compile-time error because 'd' is an invalid specifier for strings.
    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
  \endrst
 */
#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string)

template <typename... Args, typename S,
          enable_if_t<(is_compile_string<S>::value), int>>
void check_format_string(S format_str) {
  FMT_CONSTEXPR_DECL auto s = to_string_view(format_str);
  using checker = format_string_checker<typename S::char_type, error_handler,
                                        remove_cvref_t<Args>...>;
  FMT_CONSTEXPR_DECL bool invalid_format =
      (parse_format_string<true>(s, checker(s, {})), true);
  (void)invalid_format;
}

template <template <typename> class Handler, typename Context>
void handle_dynamic_spec(int& value, arg_ref<typename Context::char_type> ref,
                         Context& ctx) {
  switch (ref.kind) {
  case arg_id_kind::none:
    break;
  case arg_id_kind::index:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
                                              ctx.error_handler());
    break;
  case arg_id_kind::name:
    value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
                                              ctx.error_handler());
    break;
  }
}

using format_func = void (*)(detail::buffer<char>&, int, string_view);

FMT_API void format_error_code(buffer<char>& out, int error_code,
                               string_view message) FMT_NOEXCEPT;

FMT_API void report_error(format_func func, int error_code,
                          string_view message) FMT_NOEXCEPT;

/** The default argument formatter. */
template <typename OutputIt, typename Char>
class arg_formatter : public arg_formatter_base<OutputIt, Char> {
 private:
  using char_type = Char;
  using base = arg_formatter_base<OutputIt, Char>;
  using context_type = basic_format_context<OutputIt, Char>;

  context_type& ctx_;
  basic_format_parse_context<char_type>* parse_ctx_;
  const Char* ptr_;

 public:
  using iterator = typename base::iterator;
  using format_specs = typename base::format_specs;

  /**
    \rst
    Constructs an argument formatter object.
    *ctx* is a reference to the formatting context,
    *specs* contains format specifier information for standard argument types.
    \endrst
   */
  explicit arg_formatter(
      context_type& ctx,
      basic_format_parse_context<char_type>* parse_ctx = nullptr,
      format_specs* specs = nullptr, const Char* ptr = nullptr)
      : base(ctx.out(), specs, ctx.locale()),
        ctx_(ctx),
        parse_ctx_(parse_ctx),
        ptr_(ptr) {}

  using base::operator();

  /** Formats an argument of a user-defined type. */
  iterator operator()(typename basic_format_arg<context_type>::handle handle) {
    if (ptr_) advance_to(*parse_ctx_, ptr_);
    handle.format(*parse_ctx_, ctx_);
    return ctx_.out();
  }
};
}  // namespace detail

template <typename OutputIt, typename Char>
using arg_formatter FMT_DEPRECATED_ALIAS =
  detail::arg_formatter<OutputIt, Char>;

/**
 An error returned by an operating system or a language runtime,
 for example a file opening error.
*/
FMT_CLASS_API
class FMT_API system_error : public std::runtime_error {
 private:
  void init(int err_code, string_view format_str, format_args args);

 protected:
  int error_code_;

  system_error() : std::runtime_error(""), error_code_(0) {}

 public:
  /**
   \rst
   Constructs a :class:`fmt::system_error` object with a description
   formatted with `fmt::format_system_error`. *message* and additional
   arguments passed into the constructor are formatted similarly to
   `fmt::format`.

   **Example**::

     // This throws a system_error with the description
     //   cannot open file 'madeup': No such file or directory
     // or similar (system message may vary).
     const char *filename = "madeup";
     std::FILE *file = std::fopen(filename, "r");
     if (!file)
       throw fmt::system_error(errno, "cannot open file '{}'", filename);
   \endrst
  */
  template <typename... Args>
  system_error(int error_code, string_view message, const Args&... args)
      : std::runtime_error("") {
    init(error_code, message, make_format_args(args...));
  }
  system_error(const system_error&) = default;
  system_error& operator=(const system_error&) = default;
  system_error(system_error&&) = default;
  system_error& operator=(system_error&&) = default;
  ~system_error() FMT_NOEXCEPT FMT_OVERRIDE;

  int error_code() const { return error_code_; }
};

/**
  \rst
  Formats an error returned by an operating system or a language runtime,
  for example a file opening error, and writes it to *out* in the following
  form:

  .. parsed-literal::
     *<message>*: *<system-message>*

  where *<message>* is the passed message and *<system-message>* is
  the system message corresponding to the error code.
  *error_code* is a system error code as given by ``errno``.
  If *error_code* is not a valid error code such as -1, the system message
  may look like "Unknown error -1" and is platform-dependent.
  \endrst
 */
FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
                                 string_view message) FMT_NOEXCEPT;

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_system_error(int error_code,
                                 string_view message) FMT_NOEXCEPT;

/** Fast integer formatter. */
class format_int {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
  mutable char buffer_[buffer_size];
  char* str_;

  template <typename UInt> char* format_unsigned(UInt value) {
    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
  }

  template <typename Int> char* format_signed(Int value) {
    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
    bool negative = value < 0;
    if (negative) abs_value = 0 - abs_value;
    auto begin = format_unsigned(abs_value);
    if (negative) *--begin = '-';
    return begin;
  }

 public:
  explicit format_int(int value) : str_(format_signed(value)) {}
  explicit format_int(long value) : str_(format_signed(value)) {}
  explicit format_int(long long value) : str_(format_signed(value)) {}
  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
  explicit format_int(unsigned long long value)
      : str_(format_unsigned(value)) {}

  /** Returns the number of characters written to the output buffer. */
  size_t size() const {
    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
  }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const char* data() const { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const char* c_str() const {
    buffer_[buffer_size - 1] = '\0';
    return str_;
  }

  /**
    \rst
    Returns the content of the output buffer as an ``std::string``.
    \endrst
   */
  std::string str() const { return std::string(str_, size()); }
};

// A formatter specialization for the core types corresponding to detail::type
// constants.
template <typename T, typename Char>
struct formatter<T, Char,
                 enable_if_t<detail::type_constant<T, Char>::value !=
                             detail::type::custom_type>> {
  FMT_CONSTEXPR formatter() = default;

  // Parses format specifiers stopping either at the end of the range or at the
  // terminating '}'.
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    using handler_type = detail::dynamic_specs_handler<ParseContext>;
    auto type = detail::type_constant<T, Char>::value;
    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
                                                type);
    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
    auto eh = ctx.error_handler();
    switch (type) {
    case detail::type::none_type:
      FMT_ASSERT(false, "invalid argument type");
      break;
    case detail::type::int_type:
    case detail::type::uint_type:
    case detail::type::long_long_type:
    case detail::type::ulong_long_type:
    case detail::type::int128_type:
    case detail::type::uint128_type:
    case detail::type::bool_type:
      handle_int_type_spec(specs_.type,
                           detail::int_type_checker<decltype(eh)>(eh));
      break;
    case detail::type::char_type:
      handle_char_specs(
          &specs_, detail::char_specs_checker<decltype(eh)>(specs_.type, eh));
      break;
    case detail::type::float_type:
      if (detail::const_check(FMT_USE_FLOAT))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "float support disabled");
      break;
    case detail::type::double_type:
      if (detail::const_check(FMT_USE_DOUBLE))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "double support disabled");
      break;
    case detail::type::long_double_type:
      if (detail::const_check(FMT_USE_LONG_DOUBLE))
        detail::parse_float_type_spec(specs_, eh);
      else
        FMT_ASSERT(false, "long double support disabled");
      break;
    case detail::type::cstring_type:
      detail::handle_cstring_type_spec(
          specs_.type, detail::cstring_type_checker<decltype(eh)>(eh));
      break;
    case detail::type::string_type:
      detail::check_string_type_spec(specs_.type, eh);
      break;
    case detail::type::pointer_type:
      detail::check_pointer_type_spec(specs_.type, eh);
      break;
    case detail::type::custom_type:
      // Custom format specifiers should be checked in parse functions of
      // formatter specializations.
      break;
    }
    return it;
  }

  template <typename FormatContext>
  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    using af = detail::arg_formatter<typename FormatContext::iterator,
                                     typename FormatContext::char_type>;
    return visit_format_arg(af(ctx, nullptr, &specs_),
                            detail::make_arg<FormatContext>(val));
  }

 private:
  detail::dynamic_format_specs<Char> specs_;
};

#define FMT_FORMAT_AS(Type, Base)                                             \
  template <typename Char>                                                    \
  struct formatter<Type, Char> : formatter<Base, Char> {                      \
    template <typename FormatContext>                                         \
    auto format(Type const& val, FormatContext& ctx) -> decltype(ctx.out()) { \
      return formatter<Base, Char>::format(val, ctx);                         \
    }                                                                         \
  }

FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, long long);
FMT_FORMAT_AS(unsigned long, unsigned long long);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);

template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
  template <typename FormatContext>
  auto format(void* val, FormatContext& ctx) -> decltype(ctx.out()) {
    return formatter<const void*, Char>::format(val, ctx);
  }
};

template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
  template <typename FormatContext>
  auto format(const Char* val, FormatContext& ctx) -> decltype(ctx.out()) {
    return formatter<basic_string_view<Char>, Char>::format(val, ctx);
  }
};

// A formatter for types known only at run time such as variant alternatives.
//
// Usage:
//   using variant = std::variant<int, std::string>;
//   template <>
//   struct formatter<variant>: dynamic_formatter<> {
//     void format(buffer &buf, const variant &v, context &ctx) {
//       visit([&](const auto &val) { format(buf, val, ctx); }, v);
//     }
//   };
template <typename Char = char> class dynamic_formatter {
 private:
  struct null_handler : detail::error_handler {
    void on_align(align_t) {}
    void on_plus() {}
    void on_minus() {}
    void on_space() {}
    void on_hash() {}
  };

 public:
  template <typename ParseContext>
  auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    format_str_ = ctx.begin();
    // Checks are deferred to formatting time when the argument type is known.
    detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
    return parse_format_specs(ctx.begin(), ctx.end(), handler);
  }

  template <typename T, typename FormatContext>
  auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
    handle_specs(ctx);
    detail::specs_checker<null_handler> checker(
        null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
    checker.on_align(specs_.align);
    switch (specs_.sign) {
    case sign::none:
      break;
    case sign::plus:
      checker.on_plus();
      break;
    case sign::minus:
      checker.on_minus();
      break;
    case sign::space:
      checker.on_space();
      break;
    }
    if (specs_.alt) checker.on_hash();
    if (specs_.precision >= 0) checker.end_precision();
    using af = detail::arg_formatter<typename FormatContext::iterator,
                                     typename FormatContext::char_type>;
    visit_format_arg(af(ctx, nullptr, &specs_),
                     detail::make_arg<FormatContext>(val));
    return ctx.out();
  }

 private:
  template <typename Context> void handle_specs(Context& ctx) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
  }

  detail::dynamic_format_specs<Char> specs_;
  const Char* format_str_;
};

template <typename Char, typename ErrorHandler>
FMT_CONSTEXPR void advance_to(
    basic_format_parse_context<Char, ErrorHandler>& ctx, const Char* p) {
  ctx.advance_to(ctx.begin() + (p - &*ctx.begin()));
}

/** Formats arguments and writes the output to the range. */
template <typename ArgFormatter, typename Char, typename Context>
typename Context::iterator vformat_to(
    typename ArgFormatter::iterator out, basic_string_view<Char> format_str,
    basic_format_args<Context> args,
    detail::locale_ref loc = detail::locale_ref()) {
  if (format_str.size() == 2 && detail::equal2(format_str.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) detail::error_handler().on_error("argument not found");
    using iterator = typename ArgFormatter::iterator;
    return visit_format_arg(
        detail::default_arg_formatter<iterator, Char>{out, args, loc}, arg);
  }
  detail::format_handler<ArgFormatter, Char, Context> h(out, format_str, args,
                                                        loc);
  detail::parse_format_string<false>(format_str, h);
  return h.context.out();
}

// Casts ``p`` to ``const void*`` for pointer formatting.
// Example:
//   auto s = format("{}", ptr(p));
template <typename T> inline const void* ptr(const T* p) { return p; }
template <typename T> inline const void* ptr(const std::unique_ptr<T>& p) {
  return p.get();
}
template <typename T> inline const void* ptr(const std::shared_ptr<T>& p) {
  return p.get();
}

class bytes {
 private:
  string_view data_;
  friend struct formatter<bytes>;

 public:
  explicit bytes(string_view data) : data_(data) {}
};

template <> struct formatter<bytes> {
  template <typename ParseContext>
  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
    using handler_type = detail::dynamic_specs_handler<ParseContext>;
    detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
                                                detail::type::string_type);
    auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
    detail::check_string_type_spec(specs_.type, ctx.error_handler());
    return it;
  }

  template <typename FormatContext>
  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
                                                       specs_.width_ref, ctx);
    detail::handle_dynamic_spec<detail::precision_checker>(
        specs_.precision, specs_.precision_ref, ctx);
    return detail::write_bytes(ctx.out(), b.data_, specs_);
  }

 private:
  detail::dynamic_format_specs<char> specs_;
};

template <typename It, typename Sentinel, typename Char>
struct arg_join : detail::view {
  It begin;
  Sentinel end;
  basic_string_view<Char> sep;

  arg_join(It b, Sentinel e, basic_string_view<Char> s)
      : begin(b), end(e), sep(s) {}
};

template <typename It, typename Sentinel, typename Char>
struct formatter<arg_join<It, Sentinel, Char>, Char>
    : formatter<typename std::iterator_traits<It>::value_type, Char> {
  template <typename FormatContext>
  auto format(const arg_join<It, Sentinel, Char>& value, FormatContext& ctx)
      -> decltype(ctx.out()) {
    using base = formatter<typename std::iterator_traits<It>::value_type, Char>;
    auto it = value.begin;
    auto out = ctx.out();
    if (it != value.end) {
      out = base::format(*it++, ctx);
      while (it != value.end) {
        out = std::copy(value.sep.begin(), value.sep.end(), out);
        ctx.advance_to(out);
        out = base::format(*it++, ctx);
      }
    }
    return out;
  }
};

/**
  Returns an object that formats the iterator range `[begin, end)` with elements
  separated by `sep`.
 */
template <typename It, typename Sentinel>
arg_join<It, Sentinel, char> join(It begin, Sentinel end, string_view sep) {
  return {begin, end, sep};
}

template <typename It, typename Sentinel>
arg_join<It, Sentinel, wchar_t> join(It begin, Sentinel end, wstring_view sep) {
  return {begin, end, sep};
}

/**
  \rst
  Returns an object that formats `range` with elements separated by `sep`.

  **Example**::

    std::vector<int> v = {1, 2, 3};
    fmt::print("{}", fmt::join(v, ", "));
    // Output: "1, 2, 3"

  ``fmt::join`` applies passed format specifiers to the range elements::

    fmt::print("{:02}", fmt::join(v, ", "));
    // Output: "01, 02, 03"
  \endrst
 */
template <typename Range>
arg_join<detail::iterator_t<const Range>, detail::sentinel_t<const Range>, char>
join(const Range& range, string_view sep) {
  return join(std::begin(range), std::end(range), sep);
}

template <typename Range>
arg_join<detail::iterator_t<const Range>, detail::sentinel_t<const Range>,
         wchar_t>
join(const Range& range, wstring_view sep) {
  return join(std::begin(range), std::end(range), sep);
}

/**
  \rst
  Converts *value* to ``std::string`` using the default format for type *T*.

  **Example**::

    #include <fmt/format.h>

    std::string answer = fmt::to_string(42);
  \endrst
 */
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline std::string to_string(const T& value) {
  std::string result;
  detail::write<char>(std::back_inserter(result), value);
  return result;
}

template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline std::string to_string(T value) {
  // The buffer should be large enough to store the number including the sign or
  // "false" for bool.
  constexpr int max_size = detail::digits10<T>() + 2;
  char buffer[max_size > 5 ? max_size : 5];
  char* begin = buffer;
  return std::string(begin, detail::write<char>(begin, value));
}

/**
  Converts *value* to ``std::wstring`` using the default format for type *T*.
 */
template <typename T> inline std::wstring to_wstring(const T& value) {
  return format(L"{}", value);
}

template <typename Char, size_t SIZE>
std::basic_string<Char> to_string(const basic_memory_buffer<Char, SIZE>& buf) {
  auto size = buf.size();
  detail::assume(size < std::basic_string<Char>().max_size());
  return std::basic_string<Char>(buf.data(), size);
}

template <typename Char>
typename buffer_context<Char>::iterator detail::vformat_to(
    detail::buffer<Char>& buf, basic_string_view<Char> format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
  using af = arg_formatter<typename buffer_context<Char>::iterator, Char>;
  return vformat_to<af>(std::back_inserter(buf), to_string_view(format_str),
                        args);
}

#ifndef FMT_HEADER_ONLY
extern template format_context::iterator detail::vformat_to(
    detail::buffer<char>&, string_view, basic_format_args<format_context>);
namespace detail {
extern template FMT_API std::string grouping_impl<char>(locale_ref loc);
extern template FMT_API std::string grouping_impl<wchar_t>(locale_ref loc);
extern template FMT_API char thousands_sep_impl<char>(locale_ref loc);
extern template FMT_API wchar_t thousands_sep_impl<wchar_t>(locale_ref loc);
extern template FMT_API char decimal_point_impl(locale_ref loc);
extern template FMT_API wchar_t decimal_point_impl(locale_ref loc);
extern template int format_float<double>(double value, int precision,
                                         float_specs specs, buffer<char>& buf);
extern template int format_float<long double>(long double value, int precision,
                                              float_specs specs,
                                              buffer<char>& buf);
int snprintf_float(float value, int precision, float_specs specs,
                   buffer<char>& buf) = delete;
extern template int snprintf_float<double>(double value, int precision,
                                           float_specs specs,
                                           buffer<char>& buf);
extern template int snprintf_float<long double>(long double value,
                                                int precision,
                                                float_specs specs,
                                                buffer<char>& buf);
}  // namespace detail
#endif

template <typename S, typename Char = char_t<S>,
          FMT_ENABLE_IF(detail::is_string<S>::value)>
inline typename FMT_BUFFER_CONTEXT(Char)::iterator vformat_to(
    detail::buffer<Char>& buf, const S& format_str,
    basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args) {
  return detail::vformat_to(buf, to_string_view(format_str), args);
}

template <typename S, typename... Args, size_t SIZE = inline_buffer_size,
          typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>>
inline typename buffer_context<Char>::iterator format_to(
    basic_memory_buffer<Char, SIZE>& buf, const S& format_str, Args&&... args) {
  detail::check_format_string<Args...>(format_str);
  using context = buffer_context<Char>;
  return detail::vformat_to(buf, to_string_view(format_str),
                            make_format_args<context>(args...));
}

template <typename OutputIt, typename Char = char>
using format_context_t = basic_format_context<OutputIt, Char>;

template <typename OutputIt, typename Char = char>
using format_args_t = basic_format_args<format_context_t<OutputIt, Char>>;

template <
    typename S, typename OutputIt, typename... Args,
    FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value &&
                  !detail::is_contiguous_back_insert_iterator<OutputIt>::value)>
inline OutputIt vformat_to(
    OutputIt out, const S& format_str,
    format_args_t<type_identity_t<OutputIt>, char_t<S>> args) {
  using af = detail::arg_formatter<OutputIt, char_t<S>>;
  return vformat_to<af>(out, to_string_view(format_str), args);
}

/**
 \rst
 Formats arguments, writes the result to the output iterator ``out`` and returns
 the iterator past the end of the output range.

 **Example**::

   std::vector<char> out;
   fmt::format_to(std::back_inserter(out), "{}", 42);
 \endrst
 */
template <typename OutputIt, typename S, typename... Args,
          FMT_ENABLE_IF(
              detail::is_output_iterator<OutputIt>::value &&
              !detail::is_contiguous_back_insert_iterator<OutputIt>::value &&
              detail::is_string<S>::value)>
inline OutputIt format_to(OutputIt out, const S& format_str, Args&&... args) {
  detail::check_format_string<Args...>(format_str);
  using context = format_context_t<OutputIt, char_t<S>>;
  return vformat_to(out, to_string_view(format_str),
                    make_format_args<context>(args...));
}

template <typename OutputIt> struct format_to_n_result {
  /** Iterator past the end of the output range. */
  OutputIt out;
  /** Total (not truncated) output size. */
  size_t size;
};

template <typename OutputIt, typename Char = typename OutputIt::value_type>
using format_to_n_context =
    format_context_t<detail::truncating_iterator<OutputIt>, Char>;

template <typename OutputIt, typename Char = typename OutputIt::value_type>
using format_to_n_args = basic_format_args<format_to_n_context<OutputIt, Char>>;

template <typename OutputIt, typename Char, typename... Args>
inline format_arg_store<format_to_n_context<OutputIt, Char>, Args...>
make_format_to_n_args(const Args&... args) {
  return format_arg_store<format_to_n_context<OutputIt, Char>, Args...>(
      args...);
}

template <typename OutputIt, typename Char, typename... Args,
          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value)>
inline format_to_n_result<OutputIt> vformat_to_n(
    OutputIt out, size_t n, basic_string_view<Char> format_str,
    format_to_n_args<type_identity_t<OutputIt>, type_identity_t<Char>> args) {
  auto it = vformat_to(detail::truncating_iterator<OutputIt>(out, n),
                       format_str, args);
  return {it.base(), it.count()};
}

/**
 \rst
 Formats arguments, writes up to ``n`` characters of the result to the output
 iterator ``out`` and returns the total output size and the iterator past the
 end of the output range.
 \endrst
 */
template <typename OutputIt, typename S, typename... Args,
          FMT_ENABLE_IF(detail::is_string<S>::value&&
                            detail::is_output_iterator<OutputIt>::value)>
inline format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n,
                                                const S& format_str,
                                                const Args&... args) {
  detail::check_format_string<Args...>(format_str);
  using context = format_to_n_context<OutputIt, char_t<S>>;
  return vformat_to_n(out, n, to_string_view(format_str),
                      make_format_args<context>(args...));
}

template <typename Char, enable_if_t<(!std::is_same<Char, char>::value), int>>
std::basic_string<Char> detail::vformat(
    basic_string_view<Char> format_str,
    basic_format_args<buffer_context<type_identity_t<Char>>> args) {
  basic_memory_buffer<Char> buffer;
  detail::vformat_to(buffer, format_str, args);
  return to_string(buffer);
}

/**
  Returns the number of characters in the output of
  ``format(format_str, args...)``.
 */
template <typename... Args>
inline size_t formatted_size(string_view format_str, const Args&... args) {
  return format_to(detail::counting_iterator(), format_str, args...).count();
}

template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)>
void vprint(std::FILE* f, basic_string_view<Char> format_str,
            wformat_args args) {
  wmemory_buffer buffer;
  detail::vformat_to(buffer, format_str, args);
  buffer.push_back(L'\0');
  if (std::fputws(buffer.data(), f) == -1)
    FMT_THROW(system_error(errno, "cannot write to file"));
}

template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)>
void vprint(basic_string_view<Char> format_str, wformat_args args) {
  vprint(stdout, format_str, args);
}

#if FMT_USE_USER_DEFINED_LITERALS
namespace detail {

#  if FMT_USE_UDL_TEMPLATE
template <typename Char, Char... CHARS> class udl_formatter {
 public:
  template <typename... Args>
  std::basic_string<Char> operator()(Args&&... args) const {
    static FMT_CONSTEXPR_DECL Char s[] = {CHARS..., '\0'};
    check_format_string<remove_cvref_t<Args>...>(FMT_STRING(s));
    return format(s, std::forward<Args>(args)...);
  }
};
#  else
template <typename Char> struct udl_formatter {
  basic_string_view<Char> str;

  template <typename... Args>
  std::basic_string<Char> operator()(Args&&... args) const {
    return format(str, std::forward<Args>(args)...);
  }
};
#  endif  // FMT_USE_UDL_TEMPLATE

template <typename Char> struct udl_arg {
  const Char* str;

  template <typename T> named_arg<Char, T> operator=(T&& value) const {
    return {str, std::forward<T>(value)};
  }
};
}  // namespace detail

inline namespace literals {
#  if FMT_USE_UDL_TEMPLATE
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wpedantic"
#    if FMT_CLANG_VERSION
#      pragma GCC diagnostic ignored "-Wgnu-string-literal-operator-template"
#    endif
template <typename Char, Char... CHARS>
FMT_CONSTEXPR detail::udl_formatter<Char, CHARS...> operator""_format() {
  return {};
}
#    pragma GCC diagnostic pop
#  else
/**
  \rst
  User-defined literal equivalent of :func:`fmt::format`.

  **Example**::

    using namespace fmt::literals;
    std::string message = "The answer is {}"_format(42);
  \endrst
 */
FMT_CONSTEXPR detail::udl_formatter<char> operator"" _format(const char* s,
                                                             size_t n) {
  return {{s, n}};
}
FMT_CONSTEXPR detail::udl_formatter<wchar_t> operator"" _format(
    const wchar_t* s, size_t n) {
  return {{s, n}};
}
#  endif  // FMT_USE_UDL_TEMPLATE

/**
  \rst
  User-defined literal equivalent of :func:`fmt::arg`.

  **Example**::

    using namespace fmt::literals;
    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
  \endrst
 */
FMT_CONSTEXPR detail::udl_arg<char> operator"" _a(const char* s, size_t) {
  return {s};
}
FMT_CONSTEXPR detail::udl_arg<wchar_t> operator"" _a(const wchar_t* s, size_t) {
  return {s};
}
}  // namespace literals
#endif  // FMT_USE_USER_DEFINED_LITERALS
FMT_END_NAMESPACE

#ifdef FMT_HEADER_ONLY
#  define FMT_FUNC inline
#  include "format-inl.h"
#else
#  define FMT_FUNC
#endif

#endif  // FMT_FORMAT_H_