format-inl.h 52.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.

#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_

#include <cassert>
#include <cctype>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring>  // for std::memmove
#include <cwchar>
#include <exception>

#include "format.h"
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
#  include <locale>
#endif

#ifdef _WIN32
#  if !defined(NOMINMAX) && !defined(WIN32_LEAN_AND_MEAN)
#    define NOMINMAX
#    define WIN32_LEAN_AND_MEAN
#    include <windows.h>
#    undef WIN32_LEAN_AND_MEAN
#    undef NOMINMAX
#  else
#    include <windows.h>
#  endif
#  include <io.h>
#endif

#ifdef _MSC_VER
#  pragma warning(push)
#  pragma warning(disable : 4702)  // unreachable code
#endif

// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }

FMT_BEGIN_NAMESPACE
namespace detail {

FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
  // Use unchecked std::fprintf to avoid triggering another assertion when
  // writing to stderr fails
  std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
  // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
  // code pass.
  std::terminate();
}

#ifndef _MSC_VER
#  define FMT_SNPRINTF snprintf
#else  // _MSC_VER
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
  va_list args;
  va_start(args, format);
  int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
  va_end(args);
  return result;
}
#  define FMT_SNPRINTF fmt_snprintf
#endif  // _MSC_VER

// A portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
//   0      - success
//   ERANGE - buffer is not large enough to store the error message
//   other  - failure
// Buffer should be at least of size 1.
FMT_FUNC int safe_strerror(int error_code, char*& buffer,
                           size_t buffer_size) FMT_NOEXCEPT {
  FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");

  class dispatcher {
   private:
    int error_code_;
    char*& buffer_;
    size_t buffer_size_;

    // A noop assignment operator to avoid bogus warnings.
    void operator=(const dispatcher&) {}

    // Handle the result of XSI-compliant version of strerror_r.
    int handle(int result) {
      // glibc versions before 2.13 return result in errno.
      return result == -1 ? errno : result;
    }

    // Handle the result of GNU-specific version of strerror_r.
    FMT_MAYBE_UNUSED
    int handle(char* message) {
      // If the buffer is full then the message is probably truncated.
      if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
        return ERANGE;
      buffer_ = message;
      return 0;
    }

    // Handle the case when strerror_r is not available.
    FMT_MAYBE_UNUSED
    int handle(detail::null<>) {
      return fallback(strerror_s(buffer_, buffer_size_, error_code_));
    }

    // Fallback to strerror_s when strerror_r is not available.
    FMT_MAYBE_UNUSED
    int fallback(int result) {
      // If the buffer is full then the message is probably truncated.
      return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
                                                                : result;
    }

#if !FMT_MSC_VER
    // Fallback to strerror if strerror_r and strerror_s are not available.
    int fallback(detail::null<>) {
      errno = 0;
      buffer_ = strerror(error_code_);
      return errno;
    }
#endif

   public:
    dispatcher(int err_code, char*& buf, size_t buf_size)
        : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}

    int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
  };
  return dispatcher(error_code, buffer, buffer_size).run();
}

FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
                                string_view message) FMT_NOEXCEPT {
  // Report error code making sure that the output fits into
  // inline_buffer_size to avoid dynamic memory allocation and potential
  // bad_alloc.
  out.resize(0);
  static const char SEP[] = ": ";
  static const char ERROR_STR[] = "error ";
  // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
  size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
  auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
  if (detail::is_negative(error_code)) {
    abs_value = 0 - abs_value;
    ++error_code_size;
  }
  error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
  auto it = std::back_inserter(out);
  if (message.size() <= inline_buffer_size - error_code_size)
    format_to(it, "{}{}", message, SEP);
  format_to(it, "{}{}", ERROR_STR, error_code);
  assert(out.size() <= inline_buffer_size);
}

FMT_FUNC void report_error(format_func func, int error_code,
                           string_view message) FMT_NOEXCEPT {
  memory_buffer full_message;
  func(full_message, error_code, message);
  // Don't use fwrite_fully because the latter may throw.
  (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
  std::fputc('\n', stderr);
}

// A wrapper around fwrite that throws on error.
FMT_FUNC void fwrite_fully(const void* ptr, size_t size, size_t count,
                           FILE* stream) {
  size_t written = std::fwrite(ptr, size, count, stream);
  if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
}
}  // namespace detail

#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
namespace detail {

template <typename Locale>
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
  static_assert(std::is_same<Locale, std::locale>::value, "");
}

template <typename Locale> Locale locale_ref::get() const {
  static_assert(std::is_same<Locale, std::locale>::value, "");
  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}

template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
}
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
      .thousands_sep();
}
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
      .decimal_point();
}
}  // namespace detail
#else
template <typename Char>
FMT_FUNC std::string detail::grouping_impl(locale_ref) {
  return "\03";
}
template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
  return FMT_STATIC_THOUSANDS_SEPARATOR;
}
template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
  return '.';
}
#endif

FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;

FMT_FUNC void system_error::init(int err_code, string_view format_str,
                                 format_args args) {
  error_code_ = err_code;
  memory_buffer buffer;
  format_system_error(buffer, err_code, vformat(format_str, args));
  std::runtime_error& base = *this;
  base = std::runtime_error(to_string(buffer));
}

namespace detail {

template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
  // fallback_uintptr is always stored in little endian.
  int i = static_cast<int>(sizeof(void*)) - 1;
  while (i > 0 && n.value[i] == 0) --i;
  auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
  return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
}

template <typename T>
const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
    {'0', '0'},  {'0', '1'},  {'0', '2'},  {'0', '3'},  {'0', '4'},
    {'0', '5'},  {'0', '6'},  {'0', '7'},  {'0', '8'},  {'0', '9'},
    {'1', '0'},  {'1', '1'},  {'1', '2'},  {'1', '3'},  {'1', '4'},
    {'1', '5'},  {'1', '6'},  {'1', '7'},  {'1', '8'},  {'1', '9'},
    {'2', '0'},  {'2', '1'},  {'2', '2'},  {'2', '3'},  {'2', '4'},
    {'2', '5'},  {'2', '6'},  {'2', '7'},  {'2', '8'},  {'2', '9'},
    {'3', '0'},  {'3', '1'},  {'3', '2'},  {'3', '3'},  {'3', '4'},
    {'3', '5'},  {'3', '6'},  {'3', '7'},  {'3', '8'},  {'3', '9'},
    {'4', '0'},  {'4', '1'},  {'4', '2'},  {'4', '3'},  {'4', '4'},
    {'4', '5'},  {'4', '6'},  {'4', '7'},  {'4', '8'},  {'4', '9'},
    {'5', '0'},  {'5', '1'},  {'5', '2'},  {'5', '3'},  {'5', '4'},
    {'5', '5'},  {'5', '6'},  {'5', '7'},  {'5', '8'},  {'5', '9'},
    {'6', '0'},  {'6', '1'},  {'6', '2'},  {'6', '3'},  {'6', '4'},
    {'6', '5'},  {'6', '6'},  {'6', '7'},  {'6', '8'},  {'6', '9'},
    {'7', '0'},  {'7', '1'},  {'7', '2'},  {'7', '3'},  {'7', '4'},
    {'7', '5'},  {'7', '6'},  {'7', '7'},  {'7', '8'},  {'7', '9'},
    {'8', '0'},  {'8', '1'},  {'8', '2'},  {'8', '3'},  {'8', '4'},
    {'8', '5'},  {'8', '6'},  {'8', '7'},  {'8', '8'},  {'8', '9'},
    {'9', '0'},  {'9', '1'},  {'9', '2'},  {'9', '3'},  {'9', '4'},
    {'9', '5'},  {'9', '6'},  {'9', '7'},  {'9', '8'},  {'9', '9'}};

template <typename T>
const char basic_data<T>::hex_digits[] = "0123456789abcdef";

#define FMT_POWERS_OF_10(factor)                                             \
  factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
      (factor)*1000000, (factor)*10000000, (factor)*100000000,               \
      (factor)*1000000000

template <typename T>
const uint64_t basic_data<T>::powers_of_10_64[] = {
    1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
    10000000000000000000ULL};

template <typename T>
const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
                                                           FMT_POWERS_OF_10(1)};

template <typename T>
const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
    0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
    10000000000000000000ULL};

// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template <typename T>
const uint64_t basic_data<T>::pow10_significands[] = {
    0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
    0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
    0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
    0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
    0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
    0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
    0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
    0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
    0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
    0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
    0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
    0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
    0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
    0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
    0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
    0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
    0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
    0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
    0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
    0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
    0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
    0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
    0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
    0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
    0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
    0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
    0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
    0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
    0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};

// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template <typename T>
const int16_t basic_data<T>::pow10_exponents[] = {
    -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
    -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,  -688, -661,
    -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,  -422,  -396, -369,
    -343,  -316,  -289,  -263,  -236,  -210,  -183,  -157,  -130,  -103, -77,
    -50,   -24,   3,     30,    56,    83,    109,   136,   162,   189,  216,
    242,   269,   295,   322,   348,   375,   402,   428,   455,   481,  508,
    534,   561,   588,   614,   641,   667,   694,   720,   747,   774,  800,
    827,   853,   880,   907,   933,   960,   986,   1013,  1039,  1066};

template <typename T>
const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
template <typename T>
const char basic_data<T>::background_color[] = "\x1b[48;2;";
template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
template <typename T>
const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
template <typename T>
const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};

template <typename T> struct bits {
  static FMT_CONSTEXPR_DECL const int value =
      static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
};

class fp;
template <int SHIFT = 0> fp normalize(fp value);

// Lower (upper) boundary is a value half way between a floating-point value
// and its predecessor (successor). Boundaries have the same exponent as the
// value so only significands are stored.
struct boundaries {
  uint64_t lower;
  uint64_t upper;
};

// A handmade floating-point number f * pow(2, e).
class fp {
 private:
  using significand_type = uint64_t;

 public:
  significand_type f;
  int e;

  // All sizes are in bits.
  // Subtract 1 to account for an implicit most significant bit in the
  // normalized form.
  static FMT_CONSTEXPR_DECL const int double_significand_size =
      std::numeric_limits<double>::digits - 1;
  static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
      1ULL << double_significand_size;
  static FMT_CONSTEXPR_DECL const int significand_size =
      bits<significand_type>::value;

  fp() : f(0), e(0) {}
  fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}

  // Constructs fp from an IEEE754 double. It is a template to prevent compile
  // errors on platforms where double is not IEEE754.
  template <typename Double> explicit fp(Double d) { assign(d); }

  // Assigns d to this and return true iff predecessor is closer than successor.
  template <typename Double, FMT_ENABLE_IF(sizeof(Double) == sizeof(uint64_t))>
  bool assign(Double d) {
    // Assume double is in the format [sign][exponent][significand].
    using limits = std::numeric_limits<Double>;
    const int exponent_size =
        bits<Double>::value - double_significand_size - 1;  // -1 for sign
    const uint64_t significand_mask = implicit_bit - 1;
    const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
    const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
    auto u = bit_cast<uint64_t>(d);
    f = u & significand_mask;
    int biased_e =
        static_cast<int>((u & exponent_mask) >> double_significand_size);
    // Predecessor is closer if d is a normalized power of 2 (f == 0) other than
    // the smallest normalized number (biased_e > 1).
    bool is_predecessor_closer = f == 0 && biased_e > 1;
    if (biased_e != 0)
      f += implicit_bit;
    else
      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
    e = biased_e - exponent_bias - double_significand_size;
    return is_predecessor_closer;
  }

  template <typename Double, FMT_ENABLE_IF(sizeof(Double) != sizeof(uint64_t))>
  bool assign(Double) {
    *this = fp();
    return false;
  }

  // Assigns d to this together with computing lower and upper boundaries,
  // where a boundary is a value half way between the number and its predecessor
  // (lower) or successor (upper). The upper boundary is normalized and lower
  // has the same exponent but may be not normalized.
  template <typename Double> boundaries assign_with_boundaries(Double d) {
    bool is_lower_closer = assign(d);
    fp lower =
        is_lower_closer ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
    // 1 in normalize accounts for the exponent shift above.
    fp upper = normalize<1>(fp((f << 1) + 1, e - 1));
    lower.f <<= lower.e - upper.e;
    return boundaries{lower.f, upper.f};
  }

  template <typename Double> boundaries assign_float_with_boundaries(Double d) {
    assign(d);
    constexpr int min_normal_e = std::numeric_limits<float>::min_exponent -
                                 std::numeric_limits<double>::digits;
    significand_type half_ulp = 1 << (std::numeric_limits<double>::digits -
                                      std::numeric_limits<float>::digits - 1);
    if (min_normal_e > e) half_ulp <<= min_normal_e - e;
    fp upper = normalize<0>(fp(f + half_ulp, e));
    fp lower = fp(
        f - (half_ulp >> ((f == implicit_bit && e > min_normal_e) ? 1 : 0)), e);
    lower.f <<= lower.e - upper.e;
    return boundaries{lower.f, upper.f};
  }
};

// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT> fp normalize(fp value) {
  // Handle subnormals.
  const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
  while ((value.f & shifted_implicit_bit) == 0) {
    value.f <<= 1;
    --value.e;
  }
  // Subtract 1 to account for hidden bit.
  const auto offset =
      fp::significand_size - fp::double_significand_size - SHIFT - 1;
  value.f <<= offset;
  value.e -= offset;
  return value;
}

inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }

// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
#if FMT_USE_INT128
  auto product = static_cast<__uint128_t>(lhs) * rhs;
  auto f = static_cast<uint64_t>(product >> 64);
  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
  // Multiply 32-bit parts of significands.
  uint64_t mask = (1ULL << 32) - 1;
  uint64_t a = lhs >> 32, b = lhs & mask;
  uint64_t c = rhs >> 32, d = rhs & mask;
  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
  // Compute mid 64-bit of result and round.
  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}

inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }

// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
  const int64_t one_over_log2_10 = 0x4d104d42;  // round(pow(2, 32) / log2(10))
  int index = static_cast<int>(
      ((min_exponent + fp::significand_size - 1) * one_over_log2_10 +
       ((int64_t(1) << 32) - 1))  // ceil
      >> 32                       // arithmetic shift
  );
  // Decimal exponent of the first (smallest) cached power of 10.
  const int first_dec_exp = -348;
  // Difference between 2 consecutive decimal exponents in cached powers of 10.
  const int dec_exp_step = 8;
  index = (index - first_dec_exp - 1) / dec_exp_step + 1;
  pow10_exponent = first_dec_exp + index * dec_exp_step;
  return {data::pow10_significands[index], data::pow10_exponents[index]};
}

// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
// is not available.
struct accumulator {
  uint64_t lower;
  uint64_t upper;

  accumulator() : lower(0), upper(0) {}
  explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }

  void operator+=(uint64_t n) {
    lower += n;
    if (lower < n) ++upper;
  }
  void operator>>=(int shift) {
    assert(shift == 32);
    (void)shift;
    lower = (upper << 32) | (lower >> 32);
    upper >>= 32;
  }
};

class bigint {
 private:
  // A bigint is stored as an array of bigits (big digits), with bigit at index
  // 0 being the least significant one.
  using bigit = uint32_t;
  using double_bigit = uint64_t;
  enum { bigits_capacity = 32 };
  basic_memory_buffer<bigit, bigits_capacity> bigits_;
  int exp_;

  bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
  bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }

  static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;

  friend struct formatter<bigint>;

  void subtract_bigits(int index, bigit other, bigit& borrow) {
    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
    (*this)[index] = static_cast<bigit>(result);
    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
  }

  void remove_leading_zeros() {
    int num_bigits = static_cast<int>(bigits_.size()) - 1;
    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
    bigits_.resize(to_unsigned(num_bigits + 1));
  }

  // Computes *this -= other assuming aligned bigints and *this >= other.
  void subtract_aligned(const bigint& other) {
    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
    FMT_ASSERT(compare(*this, other) >= 0, "");
    bigit borrow = 0;
    int i = other.exp_ - exp_;
    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) {
      subtract_bigits(i, other.bigits_[j], borrow);
    }
    while (borrow > 0) subtract_bigits(i, 0, borrow);
    remove_leading_zeros();
  }

  void multiply(uint32_t value) {
    const double_bigit wide_value = value;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      double_bigit result = bigits_[i] * wide_value + carry;
      bigits_[i] = static_cast<bigit>(result);
      carry = static_cast<bigit>(result >> bigit_bits);
    }
    if (carry != 0) bigits_.push_back(carry);
  }

  void multiply(uint64_t value) {
    const bigit mask = ~bigit(0);
    const double_bigit lower = value & mask;
    const double_bigit upper = value >> bigit_bits;
    double_bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      double_bigit result = bigits_[i] * lower + (carry & mask);
      carry =
          bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
      bigits_[i] = static_cast<bigit>(result);
    }
    while (carry != 0) {
      bigits_.push_back(carry & mask);
      carry >>= bigit_bits;
    }
  }

 public:
  bigint() : exp_(0) {}
  explicit bigint(uint64_t n) { assign(n); }
  ~bigint() { assert(bigits_.capacity() <= bigits_capacity); }

  bigint(const bigint&) = delete;
  void operator=(const bigint&) = delete;

  void assign(const bigint& other) {
    auto size = other.bigits_.size();
    bigits_.resize(size);
    auto data = other.bigits_.data();
    std::copy(data, data + size, make_checked(bigits_.data(), size));
    exp_ = other.exp_;
  }

  void assign(uint64_t n) {
    size_t num_bigits = 0;
    do {
      bigits_[num_bigits++] = n & ~bigit(0);
      n >>= bigit_bits;
    } while (n != 0);
    bigits_.resize(num_bigits);
    exp_ = 0;
  }

  int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }

  FMT_NOINLINE bigint& operator<<=(int shift) {
    assert(shift >= 0);
    exp_ += shift / bigit_bits;
    shift %= bigit_bits;
    if (shift == 0) return *this;
    bigit carry = 0;
    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
      bigit c = bigits_[i] >> (bigit_bits - shift);
      bigits_[i] = (bigits_[i] << shift) + carry;
      carry = c;
    }
    if (carry != 0) bigits_.push_back(carry);
    return *this;
  }

  template <typename Int> bigint& operator*=(Int value) {
    FMT_ASSERT(value > 0, "");
    multiply(uint32_or_64_or_128_t<Int>(value));
    return *this;
  }

  friend int compare(const bigint& lhs, const bigint& rhs) {
    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
    if (num_lhs_bigits != num_rhs_bigits)
      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
    int i = static_cast<int>(lhs.bigits_.size()) - 1;
    int j = static_cast<int>(rhs.bigits_.size()) - 1;
    int end = i - j;
    if (end < 0) end = 0;
    for (; i >= end; --i, --j) {
      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
    }
    if (i != j) return i > j ? 1 : -1;
    return 0;
  }

  // Returns compare(lhs1 + lhs2, rhs).
  friend int add_compare(const bigint& lhs1, const bigint& lhs2,
                         const bigint& rhs) {
    int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
    int num_rhs_bigits = rhs.num_bigits();
    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
    if (max_lhs_bigits > num_rhs_bigits) return 1;
    auto get_bigit = [](const bigint& n, int i) -> bigit {
      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
    };
    double_bigit borrow = 0;
    int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
      double_bigit sum =
          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
      bigit rhs_bigit = get_bigit(rhs, i);
      if (sum > rhs_bigit + borrow) return 1;
      borrow = rhs_bigit + borrow - sum;
      if (borrow > 1) return -1;
      borrow <<= bigit_bits;
    }
    return borrow != 0 ? -1 : 0;
  }

  // Assigns pow(10, exp) to this bigint.
  void assign_pow10(int exp) {
    assert(exp >= 0);
    if (exp == 0) return assign(1);
    // Find the top bit.
    int bitmask = 1;
    while (exp >= bitmask) bitmask <<= 1;
    bitmask >>= 1;
    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
    // repeated squaring and multiplication.
    assign(5);
    bitmask >>= 1;
    while (bitmask != 0) {
      square();
      if ((exp & bitmask) != 0) *this *= 5;
      bitmask >>= 1;
    }
    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
  }

  void square() {
    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
    int num_bigits = static_cast<int>(bigits_.size());
    int num_result_bigits = 2 * num_bigits;
    bigits_.resize(to_unsigned(num_result_bigits));
    using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
    auto sum = accumulator_t();
    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
      // Compute bigit at position bigit_index of the result by adding
      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
        // Most terms are multiplied twice which can be optimized in the future.
        sum += static_cast<double_bigit>(n[i]) * n[j];
      }
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= bits<bigit>::value;  // Compute the carry.
    }
    // Do the same for the top half.
    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
         ++bigit_index) {
      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
        sum += static_cast<double_bigit>(n[i++]) * n[j--];
      (*this)[bigit_index] = static_cast<bigit>(sum);
      sum >>= bits<bigit>::value;
    }
    --num_result_bigits;
    remove_leading_zeros();
    exp_ *= 2;
  }

  // Divides this bignum by divisor, assigning the remainder to this and
  // returning the quotient.
  int divmod_assign(const bigint& divisor) {
    FMT_ASSERT(this != &divisor, "");
    if (compare(*this, divisor) < 0) return 0;
    int num_bigits = static_cast<int>(bigits_.size());
    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
    int exp_difference = exp_ - divisor.exp_;
    if (exp_difference > 0) {
      // Align bigints by adding trailing zeros to simplify subtraction.
      bigits_.resize(to_unsigned(num_bigits + exp_difference));
      for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
        bigits_[j] = bigits_[i];
      std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
      exp_ -= exp_difference;
    }
    int quotient = 0;
    do {
      subtract_aligned(divisor);
      ++quotient;
    } while (compare(*this, divisor) >= 0);
    return quotient;
  }
};

enum class round_direction { unknown, up, down };

// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
                                           uint64_t error) {
  FMT_ASSERT(remainder < divisor, "");  // divisor - remainder won't overflow.
  FMT_ASSERT(error < divisor, "");      // divisor - error won't overflow.
  FMT_ASSERT(error < divisor - error, "");  // error * 2 won't overflow.
  // Round down if (remainder + error) * 2 <= divisor.
  if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
    return round_direction::down;
  // Round up if (remainder - error) * 2 >= divisor.
  if (remainder >= error &&
      remainder - error >= divisor - (remainder - error)) {
    return round_direction::up;
  }
  return round_direction::unknown;
}

namespace digits {
enum result {
  more,  // Generate more digits.
  done,  // Done generating digits.
  error  // Digit generation cancelled due to an error.
};
}

// A version of count_digits optimized for grisu_gen_digits.
inline int grisu_count_digits(uint32_t n) {
  if (n < 10) return 1;
  if (n < 100) return 2;
  if (n < 1000) return 3;
  if (n < 10000) return 4;
  if (n < 100000) return 5;
  if (n < 1000000) return 6;
  if (n < 10000000) return 7;
  if (n < 100000000) return 8;
  if (n < 1000000000) return 9;
  return 10;
}

// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
template <typename Handler>
FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
                                                  int& exp, Handler& handler) {
  const fp one(1ULL << -value.e, value.e);
  // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
  // zero because it contains a product of two 64-bit numbers with MSB set (due
  // to normalization) - 1, shifted right by at most 60 bits.
  auto integral = static_cast<uint32_t>(value.f >> -one.e);
  FMT_ASSERT(integral != 0, "");
  FMT_ASSERT(integral == value.f >> -one.e, "");
  // The fractional part of scaled value (p2 in Grisu) c = value % one.
  uint64_t fractional = value.f & (one.f - 1);
  exp = grisu_count_digits(integral);  // kappa in Grisu.
  // Divide by 10 to prevent overflow.
  auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
                                 value.f / 10, error * 10, exp);
  if (result != digits::more) return result;
  // Generate digits for the integral part. This can produce up to 10 digits.
  do {
    uint32_t digit = 0;
    auto divmod_integral = [&](uint32_t divisor) {
      digit = integral / divisor;
      integral %= divisor;
    };
    // This optimization by Milo Yip reduces the number of integer divisions by
    // one per iteration.
    switch (exp) {
    case 10:
      divmod_integral(1000000000);
      break;
    case 9:
      divmod_integral(100000000);
      break;
    case 8:
      divmod_integral(10000000);
      break;
    case 7:
      divmod_integral(1000000);
      break;
    case 6:
      divmod_integral(100000);
      break;
    case 5:
      divmod_integral(10000);
      break;
    case 4:
      divmod_integral(1000);
      break;
    case 3:
      divmod_integral(100);
      break;
    case 2:
      divmod_integral(10);
      break;
    case 1:
      digit = integral;
      integral = 0;
      break;
    default:
      FMT_ASSERT(false, "invalid number of digits");
    }
    --exp;
    uint64_t remainder =
        (static_cast<uint64_t>(integral) << -one.e) + fractional;
    result = handler.on_digit(static_cast<char>('0' + digit),
                              data::powers_of_10_64[exp] << -one.e, remainder,
                              error, exp, true);
    if (result != digits::more) return result;
  } while (exp > 0);
  // Generate digits for the fractional part.
  for (;;) {
    fractional *= 10;
    error *= 10;
    char digit =
        static_cast<char>('0' + static_cast<char>(fractional >> -one.e));
    fractional &= one.f - 1;
    --exp;
    result = handler.on_digit(digit, one.f, fractional, error, exp, false);
    if (result != digits::more) return result;
  }
}

// The fixed precision digit handler.
struct fixed_handler {
  char* buf;
  int size;
  int precision;
  int exp10;
  bool fixed;

  digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
                          int& exp) {
    // Non-fixed formats require at least one digit and no precision adjustment.
    if (!fixed) return digits::more;
    // Adjust fixed precision by exponent because it is relative to decimal
    // point.
    precision += exp + exp10;
    // Check if precision is satisfied just by leading zeros, e.g.
    // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
    if (precision > 0) return digits::more;
    if (precision < 0) return digits::done;
    auto dir = get_round_direction(divisor, remainder, error);
    if (dir == round_direction::unknown) return digits::error;
    buf[size++] = dir == round_direction::up ? '1' : '0';
    return digits::done;
  }

  digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
                          uint64_t error, int, bool integral) {
    FMT_ASSERT(remainder < divisor, "");
    buf[size++] = digit;
    if (size < precision) return digits::more;
    if (!integral) {
      // Check if error * 2 < divisor with overflow prevention.
      // The check is not needed for the integral part because error = 1
      // and divisor > (1 << 32) there.
      if (error >= divisor || error >= divisor - error) return digits::error;
    } else {
      FMT_ASSERT(error == 1 && divisor > 2, "");
    }
    auto dir = get_round_direction(divisor, remainder, error);
    if (dir != round_direction::up)
      return dir == round_direction::down ? digits::done : digits::error;
    ++buf[size - 1];
    for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
      buf[i] = '0';
      ++buf[i - 1];
    }
    if (buf[0] > '9') {
      buf[0] = '1';
      buf[size++] = '0';
    }
    return digits::done;
  }
};

// The shortest representation digit handler.
struct grisu_shortest_handler {
  char* buf;
  int size;
  // Distance between scaled value and upper bound (wp_W in Grisu3).
  uint64_t diff;

  digits::result on_start(uint64_t, uint64_t, uint64_t, int&) {
    return digits::more;
  }

  // Decrement the generated number approaching value from above.
  void round(uint64_t d, uint64_t divisor, uint64_t& remainder,
             uint64_t error) {
    while (
        remainder < d && error - remainder >= divisor &&
        (remainder + divisor < d || d - remainder >= remainder + divisor - d)) {
      --buf[size - 1];
      remainder += divisor;
    }
  }

  // Implements Grisu's round_weed.
  digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
                          uint64_t error, int exp, bool integral) {
    buf[size++] = digit;
    if (remainder >= error) return digits::more;
    uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp];
    uint64_t up = (diff - 1) * unit;  // wp_Wup
    round(up, divisor, remainder, error);
    uint64_t down = (diff + 1) * unit;  // wp_Wdown
    if (remainder < down && error - remainder >= divisor &&
        (remainder + divisor < down ||
         down - remainder > remainder + divisor - down)) {
      return digits::error;
    }
    return 2 * unit <= remainder && remainder <= error - 4 * unit
               ? digits::done
               : digits::error;
  }
};

// Formats value using a variation of the Fixed-Precision Positive
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/p372-steele.pdf.
template <typename Double>
void fallback_format(Double d, buffer<char>& buf, int& exp10) {
  bigint numerator;    // 2 * R in (FPP)^2.
  bigint denominator;  // 2 * S in (FPP)^2.
  // lower and upper are differences between value and corresponding boundaries.
  bigint lower;             // (M^- in (FPP)^2).
  bigint upper_store;       // upper's value if different from lower.
  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
  fp value;
  // Shift numerator and denominator by an extra bit or two (if lower boundary
  // is closer) to make lower and upper integers. This eliminates multiplication
  // by 2 during later computations.
  // TODO: handle float
  int shift = value.assign(d) ? 2 : 1;
  uint64_t significand = value.f << shift;
  if (value.e >= 0) {
    numerator.assign(significand);
    numerator <<= value.e;
    lower.assign(1);
    lower <<= value.e;
    if (shift != 1) {
      upper_store.assign(1);
      upper_store <<= value.e + 1;
      upper = &upper_store;
    }
    denominator.assign_pow10(exp10);
    denominator <<= 1;
  } else if (exp10 < 0) {
    numerator.assign_pow10(-exp10);
    lower.assign(numerator);
    if (shift != 1) {
      upper_store.assign(numerator);
      upper_store <<= 1;
      upper = &upper_store;
    }
    numerator *= significand;
    denominator.assign(1);
    denominator <<= shift - value.e;
  } else {
    numerator.assign(significand);
    denominator.assign_pow10(exp10);
    denominator <<= shift - value.e;
    lower.assign(1);
    if (shift != 1) {
      upper_store.assign(1ULL << 1);
      upper = &upper_store;
    }
  }
  if (!upper) upper = &lower;
  // Invariant: value == (numerator / denominator) * pow(10, exp10).
  bool even = (value.f & 1) == 0;
  int num_digits = 0;
  char* data = buf.data();
  for (;;) {
    int digit = numerator.divmod_assign(denominator);
    bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
    // numerator + upper >[=] pow10:
    bool high = add_compare(numerator, *upper, denominator) + even > 0;
    data[num_digits++] = static_cast<char>('0' + digit);
    if (low || high) {
      if (!low) {
        ++data[num_digits - 1];
      } else if (high) {
        int result = add_compare(numerator, numerator, denominator);
        // Round half to even.
        if (result > 0 || (result == 0 && (digit % 2) != 0))
          ++data[num_digits - 1];
      }
      buf.resize(to_unsigned(num_digits));
      exp10 -= num_digits - 1;
      return;
    }
    numerator *= 10;
    lower *= 10;
    if (upper != &lower) *upper *= 10;
  }
}

// Formats value using the Grisu algorithm
// (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf)
// if T is a IEEE754 binary32 or binary64 and snprintf otherwise.
template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
  static_assert(!std::is_same<T, float>::value, "");
  FMT_ASSERT(value >= 0, "value is negative");

  const bool fixed = specs.format == float_format::fixed;
  if (value <= 0) {  // <= instead of == to silence a warning.
    if (precision <= 0 || !fixed) {
      buf.push_back('0');
      return 0;
    }
    buf.resize(to_unsigned(precision));
    std::uninitialized_fill_n(buf.data(), precision, '0');
    return -precision;
  }

  if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);

  int exp = 0;
  const int min_exp = -60;  // alpha in Grisu.
  int cached_exp10 = 0;     // K in Grisu.
  if (precision < 0) {
    fp fp_value;
    auto boundaries = specs.binary32
                          ? fp_value.assign_float_with_boundaries(value)
                          : fp_value.assign_with_boundaries(value);
    fp_value = normalize(fp_value);
    // Find a cached power of 10 such that multiplying value by it will bring
    // the exponent in the range [min_exp, -32].
    const fp cached_pow = get_cached_power(
        min_exp - (fp_value.e + fp::significand_size), cached_exp10);
    // Multiply value and boundaries by the cached power of 10.
    fp_value = fp_value * cached_pow;
    boundaries.lower = multiply(boundaries.lower, cached_pow.f);
    boundaries.upper = multiply(boundaries.upper, cached_pow.f);
    assert(min_exp <= fp_value.e && fp_value.e <= -32);
    --boundaries.lower;  // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}.
    ++boundaries.upper;  // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}.
    // Numbers outside of (lower, upper) definitely do not round to value.
    grisu_shortest_handler handler{buf.data(), 0,
                                   boundaries.upper - fp_value.f};
    auto result =
        grisu_gen_digits(fp(boundaries.upper, fp_value.e),
                         boundaries.upper - boundaries.lower, exp, handler);
    if (result == digits::error) {
      exp += handler.size - cached_exp10 - 1;
      fallback_format(value, buf, exp);
      return exp;
    }
    buf.resize(to_unsigned(handler.size));
  } else {
    if (precision > 17) return snprintf_float(value, precision, specs, buf);
    fp normalized = normalize(fp(value));
    const auto cached_pow = get_cached_power(
        min_exp - (normalized.e + fp::significand_size), cached_exp10);
    normalized = normalized * cached_pow;
    fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
    if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error)
      return snprintf_float(value, precision, specs, buf);
    int num_digits = handler.size;
    if (!fixed) {
      // Remove trailing zeros.
      while (num_digits > 0 && buf[num_digits - 1] == '0') {
        --num_digits;
        ++exp;
      }
    }
    buf.resize(to_unsigned(num_digits));
  }
  return exp - cached_exp10;
}

template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
                   buffer<char>& buf) {
  // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
  FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
  static_assert(!std::is_same<T, float>::value, "");

  // Subtract 1 to account for the difference in precision since we use %e for
  // both general and exponent format.
  if (specs.format == float_format::general ||
      specs.format == float_format::exp)
    precision = (precision >= 0 ? precision : 6) - 1;

  // Build the format string.
  enum { max_format_size = 7 };  // The longest format is "%#.*Le".
  char format[max_format_size];
  char* format_ptr = format;
  *format_ptr++ = '%';
  if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
  if (precision >= 0) {
    *format_ptr++ = '.';
    *format_ptr++ = '*';
  }
  if (std::is_same<T, long double>()) *format_ptr++ = 'L';
  *format_ptr++ = specs.format != float_format::hex
                      ? (specs.format == float_format::fixed ? 'f' : 'e')
                      : (specs.upper ? 'A' : 'a');
  *format_ptr = '\0';

  // Format using snprintf.
  auto offset = buf.size();
  for (;;) {
    auto begin = buf.data() + offset;
    auto capacity = buf.capacity() - offset;
#ifdef FMT_FUZZ
    if (precision > 100000)
      throw std::runtime_error(
          "fuzz mode - avoid large allocation inside snprintf");
#endif
    // Suppress the warning about a nonliteral format string.
    // Cannot use auto because of a bug in MinGW (#1532).
    int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
    int result = precision >= 0
                     ? snprintf_ptr(begin, capacity, format, precision, value)
                     : snprintf_ptr(begin, capacity, format, value);
    if (result < 0) {
      buf.reserve(buf.capacity() + 1);  // The buffer will grow exponentially.
      continue;
    }
    auto size = to_unsigned(result);
    // Size equal to capacity means that the last character was truncated.
    if (size >= capacity) {
      buf.reserve(size + offset + 1);  // Add 1 for the terminating '\0'.
      continue;
    }
    auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
    if (specs.format == float_format::fixed) {
      if (precision == 0) {
        buf.resize(size);
        return 0;
      }
      // Find and remove the decimal point.
      auto end = begin + size, p = end;
      do {
        --p;
      } while (is_digit(*p));
      int fraction_size = static_cast<int>(end - p - 1);
      std::memmove(p, p + 1, to_unsigned(fraction_size));
      buf.resize(size - 1);
      return -fraction_size;
    }
    if (specs.format == float_format::hex) {
      buf.resize(size + offset);
      return 0;
    }
    // Find and parse the exponent.
    auto end = begin + size, exp_pos = end;
    do {
      --exp_pos;
    } while (*exp_pos != 'e');
    char sign = exp_pos[1];
    assert(sign == '+' || sign == '-');
    int exp = 0;
    auto p = exp_pos + 2;  // Skip 'e' and sign.
    do {
      assert(is_digit(*p));
      exp = exp * 10 + (*p++ - '0');
    } while (p != end);
    if (sign == '-') exp = -exp;
    int fraction_size = 0;
    if (exp_pos != begin + 1) {
      // Remove trailing zeros.
      auto fraction_end = exp_pos - 1;
      while (*fraction_end == '0') --fraction_end;
      // Move the fractional part left to get rid of the decimal point.
      fraction_size = static_cast<int>(fraction_end - begin - 1);
      std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
    }
    buf.resize(to_unsigned(fraction_size) + offset + 1);
    return exp - fraction_size;
  }
}

// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from buf, reporting errors in e.
 *
 * Since this is a branchless decoder, four bytes will be read from the
 * buffer regardless of the actual length of the next character. This
 * means the buffer _must_ have at least three bytes of zero padding
 * following the end of the data stream.
 *
 * Errors are reported in e, which will be non-zero if the parsed
 * character was somehow invalid: invalid byte sequence, non-canonical
 * encoding, or a surrogate half.
 *
 * The function returns a pointer to the next character. When an error
 * occurs, this pointer will be a guess that depends on the particular
 * error, but it will always advance at least one byte.
 */
FMT_FUNC const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
  static const char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
                                 0, 0, 2, 2, 2, 2, 3, 3, 4, 0};
  static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
  static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
  static const int shiftc[] = {0, 18, 12, 6, 0};
  static const int shifte[] = {0, 6, 4, 2, 0};

  auto s = reinterpret_cast<const unsigned char*>(buf);
  int len = lengths[s[0] >> 3];

  // Compute the pointer to the next character early so that the next
  // iteration can start working on the next character. Neither Clang
  // nor GCC figure out this reordering on their own.
  const char* next = buf + len + !len;

  // Assume a four-byte character and load four bytes. Unused bits are
  // shifted out.
  *c = uint32_t(s[0] & masks[len]) << 18;
  *c |= uint32_t(s[1] & 0x3f) << 12;
  *c |= uint32_t(s[2] & 0x3f) << 6;
  *c |= uint32_t(s[3] & 0x3f) << 0;
  *c >>= shiftc[len];

  // Accumulate the various error conditions.
  *e = (*c < mins[len]) << 6;       // non-canonical encoding
  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
  *e |= (*c > 0x10FFFF) << 8;       // out of range?
  *e |= (s[1] & 0xc0) >> 2;
  *e |= (s[2] & 0xc0) >> 4;
  *e |= (s[3]) >> 6;
  *e ^= 0x2a;  // top two bits of each tail byte correct?
  *e >>= shifte[len];

  return next;
}
}  // namespace detail

template <> struct formatter<detail::bigint> {
  format_parse_context::iterator parse(format_parse_context& ctx) {
    return ctx.begin();
  }

  format_context::iterator format(const detail::bigint& n,
                                  format_context& ctx) {
    auto out = ctx.out();
    bool first = true;
    for (auto i = n.bigits_.size(); i > 0; --i) {
      auto value = n.bigits_[i - 1u];
      if (first) {
        out = format_to(out, "{:x}", value);
        first = false;
        continue;
      }
      out = format_to(out, "{:08x}", value);
    }
    if (n.exp_ > 0)
      out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
    return out;
  }
};

FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
  auto transcode = [this](const char* p) {
    auto cp = uint32_t();
    auto error = 0;
    p = utf8_decode(p, &cp, &error);
    if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
    if (cp <= 0xFFFF) {
      buffer_.push_back(static_cast<wchar_t>(cp));
    } else {
      cp -= 0x10000;
      buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
      buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
    }
    return p;
  };
  auto p = s.data();
  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
  if (s.size() >= block_size) {
    for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
  }
  if (auto num_chars_left = s.data() + s.size() - p) {
    char buf[2 * block_size - 1] = {};
    memcpy(buf, p, to_unsigned(num_chars_left));
    p = buf;
    do {
      p = transcode(p);
    } while (p - buf < num_chars_left);
  }
  buffer_.push_back(0);
}

FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
                                  string_view message) FMT_NOEXCEPT {
  FMT_TRY {
    memory_buffer buf;
    buf.resize(inline_buffer_size);
    for (;;) {
      char* system_message = &buf[0];
      int result =
          detail::safe_strerror(error_code, system_message, buf.size());
      if (result == 0) {
        format_to(std::back_inserter(out), "{}: {}", message, system_message);
        return;
      }
      if (result != ERANGE)
        break;  // Can't get error message, report error code instead.
      buf.resize(buf.size() * 2);
    }
  }
  FMT_CATCH(...) {}
  format_error_code(out, error_code, message);
}

FMT_FUNC void detail::error_handler::on_error(const char* message) {
  FMT_THROW(format_error(message));
}

FMT_FUNC void report_system_error(int error_code,
                                  fmt::string_view message) FMT_NOEXCEPT {
  report_error(format_system_error, error_code, message);
}

struct stringifier {
  template <typename T> FMT_INLINE std::string operator()(T value) const {
    return to_string(value);
  }
  std::string operator()(basic_format_arg<format_context>::handle h) const {
    memory_buffer buf;
    detail::buffer<char>& base = buf;
    format_parse_context parse_ctx({});
    format_context format_ctx(std::back_inserter(base), {}, {});
    h.format(parse_ctx, format_ctx);
    return to_string(buf);
  }
};

FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
  if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
    auto arg = args.get(0);
    if (!arg) error_handler().on_error("argument not found");
    return visit_format_arg(stringifier(), arg);
  }
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str, args);
  return to_string(buffer);
}

FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str,
                     basic_format_args<buffer_context<char>>(args));
#ifdef _WIN32
  auto fd = _fileno(f);
  if (_isatty(fd)) {
    detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
    auto written = DWORD();
    if (!WriteConsoleW(reinterpret_cast<HANDLE>(_get_osfhandle(fd)),
                       u16.c_str(), static_cast<DWORD>(u16.size()), &written,
                       nullptr)) {
      FMT_THROW(format_error("failed to write to console"));
    }
    return;
  }
#endif
  detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
}

#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
                                      format_args args) {
  memory_buffer buffer;
  detail::vformat_to(buffer, format_str,
                     basic_format_args<buffer_context<char>>(args));
  fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#endif

FMT_FUNC void vprint(string_view format_str, format_args args) {
  vprint(stdout, format_str, args);
}

FMT_END_NAMESPACE

#ifdef _MSC_VER
#  pragma warning(pop)
#endif

#endif  // FMT_FORMAT_INL_H_