format-inl.h
52.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
// Formatting library for C++ - implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
#include <cassert>
#include <cctype>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstring> // for std::memmove
#include <cwchar>
#include <exception>
#include "format.h"
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
# include <locale>
#endif
#ifdef _WIN32
# if !defined(NOMINMAX) && !defined(WIN32_LEAN_AND_MEAN)
# define NOMINMAX
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
# undef WIN32_LEAN_AND_MEAN
# undef NOMINMAX
# else
# include <windows.h>
# endif
# include <io.h>
#endif
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4702) // unreachable code
#endif
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }
FMT_BEGIN_NAMESPACE
namespace detail {
FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
// Use unchecked std::fprintf to avoid triggering another assertion when
// writing to stderr fails
std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
// Chosen instead of std::abort to satisfy Clang in CUDA mode during device
// code pass.
std::terminate();
}
#ifndef _MSC_VER
# define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
# define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
// A portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
// 0 - success
// ERANGE - buffer is not large enough to store the error message
// other - failure
// Buffer should be at least of size 1.
FMT_FUNC int safe_strerror(int error_code, char*& buffer,
size_t buffer_size) FMT_NOEXCEPT {
FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");
class dispatcher {
private:
int error_code_;
char*& buffer_;
size_t buffer_size_;
// A noop assignment operator to avoid bogus warnings.
void operator=(const dispatcher&) {}
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result) {
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of GNU-specific version of strerror_r.
FMT_MAYBE_UNUSED
int handle(char* message) {
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the case when strerror_r is not available.
FMT_MAYBE_UNUSED
int handle(detail::null<>) {
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Fallback to strerror_s when strerror_r is not available.
FMT_MAYBE_UNUSED
int fallback(int result) {
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
: result;
}
#if !FMT_MSC_VER
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(detail::null<>) {
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
#endif
public:
dispatcher(int err_code, char*& buf, size_t buf_size)
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
};
return dispatcher(error_code, buffer, buffer_size).run();
}
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
if (detail::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
auto it = std::back_inserter(out);
if (message.size() <= inline_buffer_size - error_code_size)
format_to(it, "{}{}", message, SEP);
format_to(it, "{}{}", ERROR_STR, error_code);
assert(out.size() <= inline_buffer_size);
}
FMT_FUNC void report_error(format_func func, int error_code,
string_view message) FMT_NOEXCEPT {
memory_buffer full_message;
func(full_message, error_code, message);
// Don't use fwrite_fully because the latter may throw.
(void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
}
// A wrapper around fwrite that throws on error.
FMT_FUNC void fwrite_fully(const void* ptr, size_t size, size_t count,
FILE* stream) {
size_t written = std::fwrite(ptr, size, count, stream);
if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
}
} // namespace detail
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
namespace detail {
template <typename Locale>
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
static_assert(std::is_same<Locale, std::locale>::value, "");
}
template <typename Locale> Locale locale_ref::get() const {
static_assert(std::is_same<Locale, std::locale>::value, "");
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}
template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
}
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
.thousands_sep();
}
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
.decimal_point();
}
} // namespace detail
#else
template <typename Char>
FMT_FUNC std::string detail::grouping_impl(locale_ref) {
return "\03";
}
template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
return FMT_STATIC_THOUSANDS_SEPARATOR;
}
template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
return '.';
}
#endif
FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;
FMT_FUNC void system_error::init(int err_code, string_view format_str,
format_args args) {
error_code_ = err_code;
memory_buffer buffer;
format_system_error(buffer, err_code, vformat(format_str, args));
std::runtime_error& base = *this;
base = std::runtime_error(to_string(buffer));
}
namespace detail {
template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
// fallback_uintptr is always stored in little endian.
int i = static_cast<int>(sizeof(void*)) - 1;
while (i > 0 && n.value[i] == 0) --i;
auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
}
template <typename T>
const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'},
{'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'},
{'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'},
{'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'},
{'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'},
{'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'},
{'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'},
{'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'},
{'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'},
{'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'},
{'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'},
{'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'},
{'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'},
{'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'},
{'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'},
{'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'},
{'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
template <typename T>
const char basic_data<T>::hex_digits[] = "0123456789abcdef";
#define FMT_POWERS_OF_10(factor) \
factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
(factor)*1000000, (factor)*10000000, (factor)*100000000, \
(factor)*1000000000
template <typename T>
const uint64_t basic_data<T>::powers_of_10_64[] = {
1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
template <typename T>
const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
FMT_POWERS_OF_10(1)};
template <typename T>
const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template <typename T>
const uint64_t basic_data<T>::pow10_significands[] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template <typename T>
const int16_t basic_data<T>::pow10_exponents[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
template <typename T>
const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
template <typename T>
const char basic_data<T>::background_color[] = "\x1b[48;2;";
template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
template <typename T>
const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
template <typename T>
const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};
template <typename T> struct bits {
static FMT_CONSTEXPR_DECL const int value =
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
};
class fp;
template <int SHIFT = 0> fp normalize(fp value);
// Lower (upper) boundary is a value half way between a floating-point value
// and its predecessor (successor). Boundaries have the same exponent as the
// value so only significands are stored.
struct boundaries {
uint64_t lower;
uint64_t upper;
};
// A handmade floating-point number f * pow(2, e).
class fp {
private:
using significand_type = uint64_t;
public:
significand_type f;
int e;
// All sizes are in bits.
// Subtract 1 to account for an implicit most significant bit in the
// normalized form.
static FMT_CONSTEXPR_DECL const int double_significand_size =
std::numeric_limits<double>::digits - 1;
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
1ULL << double_significand_size;
static FMT_CONSTEXPR_DECL const int significand_size =
bits<significand_type>::value;
fp() : f(0), e(0) {}
fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
// Constructs fp from an IEEE754 double. It is a template to prevent compile
// errors on platforms where double is not IEEE754.
template <typename Double> explicit fp(Double d) { assign(d); }
// Assigns d to this and return true iff predecessor is closer than successor.
template <typename Double, FMT_ENABLE_IF(sizeof(Double) == sizeof(uint64_t))>
bool assign(Double d) {
// Assume double is in the format [sign][exponent][significand].
using limits = std::numeric_limits<Double>;
const int exponent_size =
bits<Double>::value - double_significand_size - 1; // -1 for sign
const uint64_t significand_mask = implicit_bit - 1;
const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
auto u = bit_cast<uint64_t>(d);
f = u & significand_mask;
int biased_e =
static_cast<int>((u & exponent_mask) >> double_significand_size);
// Predecessor is closer if d is a normalized power of 2 (f == 0) other than
// the smallest normalized number (biased_e > 1).
bool is_predecessor_closer = f == 0 && biased_e > 1;
if (biased_e != 0)
f += implicit_bit;
else
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
e = biased_e - exponent_bias - double_significand_size;
return is_predecessor_closer;
}
template <typename Double, FMT_ENABLE_IF(sizeof(Double) != sizeof(uint64_t))>
bool assign(Double) {
*this = fp();
return false;
}
// Assigns d to this together with computing lower and upper boundaries,
// where a boundary is a value half way between the number and its predecessor
// (lower) or successor (upper). The upper boundary is normalized and lower
// has the same exponent but may be not normalized.
template <typename Double> boundaries assign_with_boundaries(Double d) {
bool is_lower_closer = assign(d);
fp lower =
is_lower_closer ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
// 1 in normalize accounts for the exponent shift above.
fp upper = normalize<1>(fp((f << 1) + 1, e - 1));
lower.f <<= lower.e - upper.e;
return boundaries{lower.f, upper.f};
}
template <typename Double> boundaries assign_float_with_boundaries(Double d) {
assign(d);
constexpr int min_normal_e = std::numeric_limits<float>::min_exponent -
std::numeric_limits<double>::digits;
significand_type half_ulp = 1 << (std::numeric_limits<double>::digits -
std::numeric_limits<float>::digits - 1);
if (min_normal_e > e) half_ulp <<= min_normal_e - e;
fp upper = normalize<0>(fp(f + half_ulp, e));
fp lower = fp(
f - (half_ulp >> ((f == implicit_bit && e > min_normal_e) ? 1 : 0)), e);
lower.f <<= lower.e - upper.e;
return boundaries{lower.f, upper.f};
}
};
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT> fp normalize(fp value) {
// Handle subnormals.
const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
while ((value.f & shifted_implicit_bit) == 0) {
value.f <<= 1;
--value.e;
}
// Subtract 1 to account for hidden bit.
const auto offset =
fp::significand_size - fp::double_significand_size - SHIFT - 1;
value.f <<= offset;
value.e -= offset;
return value;
}
inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
#if FMT_USE_INT128
auto product = static_cast<__uint128_t>(lhs) * rhs;
auto f = static_cast<uint64_t>(product >> 64);
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
#else
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = lhs >> 32, b = lhs & mask;
uint64_t c = rhs >> 32, d = rhs & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
#endif
}
inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
const int64_t one_over_log2_10 = 0x4d104d42; // round(pow(2, 32) / log2(10))
int index = static_cast<int>(
((min_exponent + fp::significand_size - 1) * one_over_log2_10 +
((int64_t(1) << 32) - 1)) // ceil
>> 32 // arithmetic shift
);
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return {data::pow10_significands[index], data::pow10_exponents[index]};
}
// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
// is not available.
struct accumulator {
uint64_t lower;
uint64_t upper;
accumulator() : lower(0), upper(0) {}
explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }
void operator+=(uint64_t n) {
lower += n;
if (lower < n) ++upper;
}
void operator>>=(int shift) {
assert(shift == 32);
(void)shift;
lower = (upper << 32) | (lower >> 32);
upper >>= 32;
}
};
class bigint {
private:
// A bigint is stored as an array of bigits (big digits), with bigit at index
// 0 being the least significant one.
using bigit = uint32_t;
using double_bigit = uint64_t;
enum { bigits_capacity = 32 };
basic_memory_buffer<bigit, bigits_capacity> bigits_;
int exp_;
bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }
static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
friend struct formatter<bigint>;
void subtract_bigits(int index, bigit other, bigit& borrow) {
auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
(*this)[index] = static_cast<bigit>(result);
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
}
void remove_leading_zeros() {
int num_bigits = static_cast<int>(bigits_.size()) - 1;
while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
bigits_.resize(to_unsigned(num_bigits + 1));
}
// Computes *this -= other assuming aligned bigints and *this >= other.
void subtract_aligned(const bigint& other) {
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
FMT_ASSERT(compare(*this, other) >= 0, "");
bigit borrow = 0;
int i = other.exp_ - exp_;
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) {
subtract_bigits(i, other.bigits_[j], borrow);
}
while (borrow > 0) subtract_bigits(i, 0, borrow);
remove_leading_zeros();
}
void multiply(uint32_t value) {
const double_bigit wide_value = value;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
double_bigit result = bigits_[i] * wide_value + carry;
bigits_[i] = static_cast<bigit>(result);
carry = static_cast<bigit>(result >> bigit_bits);
}
if (carry != 0) bigits_.push_back(carry);
}
void multiply(uint64_t value) {
const bigit mask = ~bigit(0);
const double_bigit lower = value & mask;
const double_bigit upper = value >> bigit_bits;
double_bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
double_bigit result = bigits_[i] * lower + (carry & mask);
carry =
bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
bigits_[i] = static_cast<bigit>(result);
}
while (carry != 0) {
bigits_.push_back(carry & mask);
carry >>= bigit_bits;
}
}
public:
bigint() : exp_(0) {}
explicit bigint(uint64_t n) { assign(n); }
~bigint() { assert(bigits_.capacity() <= bigits_capacity); }
bigint(const bigint&) = delete;
void operator=(const bigint&) = delete;
void assign(const bigint& other) {
auto size = other.bigits_.size();
bigits_.resize(size);
auto data = other.bigits_.data();
std::copy(data, data + size, make_checked(bigits_.data(), size));
exp_ = other.exp_;
}
void assign(uint64_t n) {
size_t num_bigits = 0;
do {
bigits_[num_bigits++] = n & ~bigit(0);
n >>= bigit_bits;
} while (n != 0);
bigits_.resize(num_bigits);
exp_ = 0;
}
int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
FMT_NOINLINE bigint& operator<<=(int shift) {
assert(shift >= 0);
exp_ += shift / bigit_bits;
shift %= bigit_bits;
if (shift == 0) return *this;
bigit carry = 0;
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
bigit c = bigits_[i] >> (bigit_bits - shift);
bigits_[i] = (bigits_[i] << shift) + carry;
carry = c;
}
if (carry != 0) bigits_.push_back(carry);
return *this;
}
template <typename Int> bigint& operator*=(Int value) {
FMT_ASSERT(value > 0, "");
multiply(uint32_or_64_or_128_t<Int>(value));
return *this;
}
friend int compare(const bigint& lhs, const bigint& rhs) {
int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
if (num_lhs_bigits != num_rhs_bigits)
return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
int i = static_cast<int>(lhs.bigits_.size()) - 1;
int j = static_cast<int>(rhs.bigits_.size()) - 1;
int end = i - j;
if (end < 0) end = 0;
for (; i >= end; --i, --j) {
bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
}
if (i != j) return i > j ? 1 : -1;
return 0;
}
// Returns compare(lhs1 + lhs2, rhs).
friend int add_compare(const bigint& lhs1, const bigint& lhs2,
const bigint& rhs) {
int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
int num_rhs_bigits = rhs.num_bigits();
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
if (max_lhs_bigits > num_rhs_bigits) return 1;
auto get_bigit = [](const bigint& n, int i) -> bigit {
return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
};
double_bigit borrow = 0;
int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
double_bigit sum =
static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
bigit rhs_bigit = get_bigit(rhs, i);
if (sum > rhs_bigit + borrow) return 1;
borrow = rhs_bigit + borrow - sum;
if (borrow > 1) return -1;
borrow <<= bigit_bits;
}
return borrow != 0 ? -1 : 0;
}
// Assigns pow(10, exp) to this bigint.
void assign_pow10(int exp) {
assert(exp >= 0);
if (exp == 0) return assign(1);
// Find the top bit.
int bitmask = 1;
while (exp >= bitmask) bitmask <<= 1;
bitmask >>= 1;
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
// repeated squaring and multiplication.
assign(5);
bitmask >>= 1;
while (bitmask != 0) {
square();
if ((exp & bitmask) != 0) *this *= 5;
bitmask >>= 1;
}
*this <<= exp; // Multiply by pow(2, exp) by shifting.
}
void square() {
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
int num_bigits = static_cast<int>(bigits_.size());
int num_result_bigits = 2 * num_bigits;
bigits_.resize(to_unsigned(num_result_bigits));
using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
auto sum = accumulator_t();
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
// Compute bigit at position bigit_index of the result by adding
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
// Most terms are multiplied twice which can be optimized in the future.
sum += static_cast<double_bigit>(n[i]) * n[j];
}
(*this)[bigit_index] = static_cast<bigit>(sum);
sum >>= bits<bigit>::value; // Compute the carry.
}
// Do the same for the top half.
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
++bigit_index) {
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
sum += static_cast<double_bigit>(n[i++]) * n[j--];
(*this)[bigit_index] = static_cast<bigit>(sum);
sum >>= bits<bigit>::value;
}
--num_result_bigits;
remove_leading_zeros();
exp_ *= 2;
}
// Divides this bignum by divisor, assigning the remainder to this and
// returning the quotient.
int divmod_assign(const bigint& divisor) {
FMT_ASSERT(this != &divisor, "");
if (compare(*this, divisor) < 0) return 0;
int num_bigits = static_cast<int>(bigits_.size());
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
int exp_difference = exp_ - divisor.exp_;
if (exp_difference > 0) {
// Align bigints by adding trailing zeros to simplify subtraction.
bigits_.resize(to_unsigned(num_bigits + exp_difference));
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
bigits_[j] = bigits_[i];
std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
exp_ -= exp_difference;
}
int quotient = 0;
do {
subtract_aligned(divisor);
++quotient;
} while (compare(*this, divisor) >= 0);
return quotient;
}
};
enum class round_direction { unknown, up, down };
// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
uint64_t error) {
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
// Round down if (remainder + error) * 2 <= divisor.
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
return round_direction::down;
// Round up if (remainder - error) * 2 >= divisor.
if (remainder >= error &&
remainder - error >= divisor - (remainder - error)) {
return round_direction::up;
}
return round_direction::unknown;
}
namespace digits {
enum result {
more, // Generate more digits.
done, // Done generating digits.
error // Digit generation cancelled due to an error.
};
}
// A version of count_digits optimized for grisu_gen_digits.
inline int grisu_count_digits(uint32_t n) {
if (n < 10) return 1;
if (n < 100) return 2;
if (n < 1000) return 3;
if (n < 10000) return 4;
if (n < 100000) return 5;
if (n < 1000000) return 6;
if (n < 10000000) return 7;
if (n < 100000000) return 8;
if (n < 1000000000) return 9;
return 10;
}
// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
template <typename Handler>
FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
int& exp, Handler& handler) {
const fp one(1ULL << -value.e, value.e);
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
// zero because it contains a product of two 64-bit numbers with MSB set (due
// to normalization) - 1, shifted right by at most 60 bits.
auto integral = static_cast<uint32_t>(value.f >> -one.e);
FMT_ASSERT(integral != 0, "");
FMT_ASSERT(integral == value.f >> -one.e, "");
// The fractional part of scaled value (p2 in Grisu) c = value % one.
uint64_t fractional = value.f & (one.f - 1);
exp = grisu_count_digits(integral); // kappa in Grisu.
// Divide by 10 to prevent overflow.
auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
value.f / 10, error * 10, exp);
if (result != digits::more) return result;
// Generate digits for the integral part. This can produce up to 10 digits.
do {
uint32_t digit = 0;
auto divmod_integral = [&](uint32_t divisor) {
digit = integral / divisor;
integral %= divisor;
};
// This optimization by Milo Yip reduces the number of integer divisions by
// one per iteration.
switch (exp) {
case 10:
divmod_integral(1000000000);
break;
case 9:
divmod_integral(100000000);
break;
case 8:
divmod_integral(10000000);
break;
case 7:
divmod_integral(1000000);
break;
case 6:
divmod_integral(100000);
break;
case 5:
divmod_integral(10000);
break;
case 4:
divmod_integral(1000);
break;
case 3:
divmod_integral(100);
break;
case 2:
divmod_integral(10);
break;
case 1:
digit = integral;
integral = 0;
break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
--exp;
uint64_t remainder =
(static_cast<uint64_t>(integral) << -one.e) + fractional;
result = handler.on_digit(static_cast<char>('0' + digit),
data::powers_of_10_64[exp] << -one.e, remainder,
error, exp, true);
if (result != digits::more) return result;
} while (exp > 0);
// Generate digits for the fractional part.
for (;;) {
fractional *= 10;
error *= 10;
char digit =
static_cast<char>('0' + static_cast<char>(fractional >> -one.e));
fractional &= one.f - 1;
--exp;
result = handler.on_digit(digit, one.f, fractional, error, exp, false);
if (result != digits::more) return result;
}
}
// The fixed precision digit handler.
struct fixed_handler {
char* buf;
int size;
int precision;
int exp10;
bool fixed;
digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
int& exp) {
// Non-fixed formats require at least one digit and no precision adjustment.
if (!fixed) return digits::more;
// Adjust fixed precision by exponent because it is relative to decimal
// point.
precision += exp + exp10;
// Check if precision is satisfied just by leading zeros, e.g.
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
if (precision > 0) return digits::more;
if (precision < 0) return digits::done;
auto dir = get_round_direction(divisor, remainder, error);
if (dir == round_direction::unknown) return digits::error;
buf[size++] = dir == round_direction::up ? '1' : '0';
return digits::done;
}
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
uint64_t error, int, bool integral) {
FMT_ASSERT(remainder < divisor, "");
buf[size++] = digit;
if (size < precision) return digits::more;
if (!integral) {
// Check if error * 2 < divisor with overflow prevention.
// The check is not needed for the integral part because error = 1
// and divisor > (1 << 32) there.
if (error >= divisor || error >= divisor - error) return digits::error;
} else {
FMT_ASSERT(error == 1 && divisor > 2, "");
}
auto dir = get_round_direction(divisor, remainder, error);
if (dir != round_direction::up)
return dir == round_direction::down ? digits::done : digits::error;
++buf[size - 1];
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] > '9') {
buf[0] = '1';
buf[size++] = '0';
}
return digits::done;
}
};
// The shortest representation digit handler.
struct grisu_shortest_handler {
char* buf;
int size;
// Distance between scaled value and upper bound (wp_W in Grisu3).
uint64_t diff;
digits::result on_start(uint64_t, uint64_t, uint64_t, int&) {
return digits::more;
}
// Decrement the generated number approaching value from above.
void round(uint64_t d, uint64_t divisor, uint64_t& remainder,
uint64_t error) {
while (
remainder < d && error - remainder >= divisor &&
(remainder + divisor < d || d - remainder >= remainder + divisor - d)) {
--buf[size - 1];
remainder += divisor;
}
}
// Implements Grisu's round_weed.
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
uint64_t error, int exp, bool integral) {
buf[size++] = digit;
if (remainder >= error) return digits::more;
uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp];
uint64_t up = (diff - 1) * unit; // wp_Wup
round(up, divisor, remainder, error);
uint64_t down = (diff + 1) * unit; // wp_Wdown
if (remainder < down && error - remainder >= divisor &&
(remainder + divisor < down ||
down - remainder > remainder + divisor - down)) {
return digits::error;
}
return 2 * unit <= remainder && remainder <= error - 4 * unit
? digits::done
: digits::error;
}
};
// Formats value using a variation of the Fixed-Precision Positive
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/p372-steele.pdf.
template <typename Double>
void fallback_format(Double d, buffer<char>& buf, int& exp10) {
bigint numerator; // 2 * R in (FPP)^2.
bigint denominator; // 2 * S in (FPP)^2.
// lower and upper are differences between value and corresponding boundaries.
bigint lower; // (M^- in (FPP)^2).
bigint upper_store; // upper's value if different from lower.
bigint* upper = nullptr; // (M^+ in (FPP)^2).
fp value;
// Shift numerator and denominator by an extra bit or two (if lower boundary
// is closer) to make lower and upper integers. This eliminates multiplication
// by 2 during later computations.
// TODO: handle float
int shift = value.assign(d) ? 2 : 1;
uint64_t significand = value.f << shift;
if (value.e >= 0) {
numerator.assign(significand);
numerator <<= value.e;
lower.assign(1);
lower <<= value.e;
if (shift != 1) {
upper_store.assign(1);
upper_store <<= value.e + 1;
upper = &upper_store;
}
denominator.assign_pow10(exp10);
denominator <<= 1;
} else if (exp10 < 0) {
numerator.assign_pow10(-exp10);
lower.assign(numerator);
if (shift != 1) {
upper_store.assign(numerator);
upper_store <<= 1;
upper = &upper_store;
}
numerator *= significand;
denominator.assign(1);
denominator <<= shift - value.e;
} else {
numerator.assign(significand);
denominator.assign_pow10(exp10);
denominator <<= shift - value.e;
lower.assign(1);
if (shift != 1) {
upper_store.assign(1ULL << 1);
upper = &upper_store;
}
}
if (!upper) upper = &lower;
// Invariant: value == (numerator / denominator) * pow(10, exp10).
bool even = (value.f & 1) == 0;
int num_digits = 0;
char* data = buf.data();
for (;;) {
int digit = numerator.divmod_assign(denominator);
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
// numerator + upper >[=] pow10:
bool high = add_compare(numerator, *upper, denominator) + even > 0;
data[num_digits++] = static_cast<char>('0' + digit);
if (low || high) {
if (!low) {
++data[num_digits - 1];
} else if (high) {
int result = add_compare(numerator, numerator, denominator);
// Round half to even.
if (result > 0 || (result == 0 && (digit % 2) != 0))
++data[num_digits - 1];
}
buf.resize(to_unsigned(num_digits));
exp10 -= num_digits - 1;
return;
}
numerator *= 10;
lower *= 10;
if (upper != &lower) *upper *= 10;
}
}
// Formats value using the Grisu algorithm
// (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf)
// if T is a IEEE754 binary32 or binary64 and snprintf otherwise.
template <typename T>
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
static_assert(!std::is_same<T, float>::value, "");
FMT_ASSERT(value >= 0, "value is negative");
const bool fixed = specs.format == float_format::fixed;
if (value <= 0) { // <= instead of == to silence a warning.
if (precision <= 0 || !fixed) {
buf.push_back('0');
return 0;
}
buf.resize(to_unsigned(precision));
std::uninitialized_fill_n(buf.data(), precision, '0');
return -precision;
}
if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);
int exp = 0;
const int min_exp = -60; // alpha in Grisu.
int cached_exp10 = 0; // K in Grisu.
if (precision < 0) {
fp fp_value;
auto boundaries = specs.binary32
? fp_value.assign_float_with_boundaries(value)
: fp_value.assign_with_boundaries(value);
fp_value = normalize(fp_value);
// Find a cached power of 10 such that multiplying value by it will bring
// the exponent in the range [min_exp, -32].
const fp cached_pow = get_cached_power(
min_exp - (fp_value.e + fp::significand_size), cached_exp10);
// Multiply value and boundaries by the cached power of 10.
fp_value = fp_value * cached_pow;
boundaries.lower = multiply(boundaries.lower, cached_pow.f);
boundaries.upper = multiply(boundaries.upper, cached_pow.f);
assert(min_exp <= fp_value.e && fp_value.e <= -32);
--boundaries.lower; // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}.
++boundaries.upper; // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}.
// Numbers outside of (lower, upper) definitely do not round to value.
grisu_shortest_handler handler{buf.data(), 0,
boundaries.upper - fp_value.f};
auto result =
grisu_gen_digits(fp(boundaries.upper, fp_value.e),
boundaries.upper - boundaries.lower, exp, handler);
if (result == digits::error) {
exp += handler.size - cached_exp10 - 1;
fallback_format(value, buf, exp);
return exp;
}
buf.resize(to_unsigned(handler.size));
} else {
if (precision > 17) return snprintf_float(value, precision, specs, buf);
fp normalized = normalize(fp(value));
const auto cached_pow = get_cached_power(
min_exp - (normalized.e + fp::significand_size), cached_exp10);
normalized = normalized * cached_pow;
fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error)
return snprintf_float(value, precision, specs, buf);
int num_digits = handler.size;
if (!fixed) {
// Remove trailing zeros.
while (num_digits > 0 && buf[num_digits - 1] == '0') {
--num_digits;
++exp;
}
}
buf.resize(to_unsigned(num_digits));
}
return exp - cached_exp10;
}
template <typename T>
int snprintf_float(T value, int precision, float_specs specs,
buffer<char>& buf) {
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
static_assert(!std::is_same<T, float>::value, "");
// Subtract 1 to account for the difference in precision since we use %e for
// both general and exponent format.
if (specs.format == float_format::general ||
specs.format == float_format::exp)
precision = (precision >= 0 ? precision : 6) - 1;
// Build the format string.
enum { max_format_size = 7 }; // The longest format is "%#.*Le".
char format[max_format_size];
char* format_ptr = format;
*format_ptr++ = '%';
if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
if (precision >= 0) {
*format_ptr++ = '.';
*format_ptr++ = '*';
}
if (std::is_same<T, long double>()) *format_ptr++ = 'L';
*format_ptr++ = specs.format != float_format::hex
? (specs.format == float_format::fixed ? 'f' : 'e')
: (specs.upper ? 'A' : 'a');
*format_ptr = '\0';
// Format using snprintf.
auto offset = buf.size();
for (;;) {
auto begin = buf.data() + offset;
auto capacity = buf.capacity() - offset;
#ifdef FMT_FUZZ
if (precision > 100000)
throw std::runtime_error(
"fuzz mode - avoid large allocation inside snprintf");
#endif
// Suppress the warning about a nonliteral format string.
// Cannot use auto because of a bug in MinGW (#1532).
int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
int result = precision >= 0
? snprintf_ptr(begin, capacity, format, precision, value)
: snprintf_ptr(begin, capacity, format, value);
if (result < 0) {
buf.reserve(buf.capacity() + 1); // The buffer will grow exponentially.
continue;
}
auto size = to_unsigned(result);
// Size equal to capacity means that the last character was truncated.
if (size >= capacity) {
buf.reserve(size + offset + 1); // Add 1 for the terminating '\0'.
continue;
}
auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
if (specs.format == float_format::fixed) {
if (precision == 0) {
buf.resize(size);
return 0;
}
// Find and remove the decimal point.
auto end = begin + size, p = end;
do {
--p;
} while (is_digit(*p));
int fraction_size = static_cast<int>(end - p - 1);
std::memmove(p, p + 1, to_unsigned(fraction_size));
buf.resize(size - 1);
return -fraction_size;
}
if (specs.format == float_format::hex) {
buf.resize(size + offset);
return 0;
}
// Find and parse the exponent.
auto end = begin + size, exp_pos = end;
do {
--exp_pos;
} while (*exp_pos != 'e');
char sign = exp_pos[1];
assert(sign == '+' || sign == '-');
int exp = 0;
auto p = exp_pos + 2; // Skip 'e' and sign.
do {
assert(is_digit(*p));
exp = exp * 10 + (*p++ - '0');
} while (p != end);
if (sign == '-') exp = -exp;
int fraction_size = 0;
if (exp_pos != begin + 1) {
// Remove trailing zeros.
auto fraction_end = exp_pos - 1;
while (*fraction_end == '0') --fraction_end;
// Move the fractional part left to get rid of the decimal point.
fraction_size = static_cast<int>(fraction_end - begin - 1);
std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
}
buf.resize(to_unsigned(fraction_size) + offset + 1);
return exp - fraction_size;
}
}
// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
/* Decode the next character, c, from buf, reporting errors in e.
*
* Since this is a branchless decoder, four bytes will be read from the
* buffer regardless of the actual length of the next character. This
* means the buffer _must_ have at least three bytes of zero padding
* following the end of the data stream.
*
* Errors are reported in e, which will be non-zero if the parsed
* character was somehow invalid: invalid byte sequence, non-canonical
* encoding, or a surrogate half.
*
* The function returns a pointer to the next character. When an error
* occurs, this pointer will be a guess that depends on the particular
* error, but it will always advance at least one byte.
*/
FMT_FUNC const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
static const char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 2, 2, 2, 2, 3, 3, 4, 0};
static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
static const int shiftc[] = {0, 18, 12, 6, 0};
static const int shifte[] = {0, 6, 4, 2, 0};
auto s = reinterpret_cast<const unsigned char*>(buf);
int len = lengths[s[0] >> 3];
// Compute the pointer to the next character early so that the next
// iteration can start working on the next character. Neither Clang
// nor GCC figure out this reordering on their own.
const char* next = buf + len + !len;
// Assume a four-byte character and load four bytes. Unused bits are
// shifted out.
*c = uint32_t(s[0] & masks[len]) << 18;
*c |= uint32_t(s[1] & 0x3f) << 12;
*c |= uint32_t(s[2] & 0x3f) << 6;
*c |= uint32_t(s[3] & 0x3f) << 0;
*c >>= shiftc[len];
// Accumulate the various error conditions.
*e = (*c < mins[len]) << 6; // non-canonical encoding
*e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
*e |= (*c > 0x10FFFF) << 8; // out of range?
*e |= (s[1] & 0xc0) >> 2;
*e |= (s[2] & 0xc0) >> 4;
*e |= (s[3]) >> 6;
*e ^= 0x2a; // top two bits of each tail byte correct?
*e >>= shifte[len];
return next;
}
} // namespace detail
template <> struct formatter<detail::bigint> {
format_parse_context::iterator parse(format_parse_context& ctx) {
return ctx.begin();
}
format_context::iterator format(const detail::bigint& n,
format_context& ctx) {
auto out = ctx.out();
bool first = true;
for (auto i = n.bigits_.size(); i > 0; --i) {
auto value = n.bigits_[i - 1u];
if (first) {
out = format_to(out, "{:x}", value);
first = false;
continue;
}
out = format_to(out, "{:08x}", value);
}
if (n.exp_ > 0)
out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
return out;
}
};
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
auto transcode = [this](const char* p) {
auto cp = uint32_t();
auto error = 0;
p = utf8_decode(p, &cp, &error);
if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
if (cp <= 0xFFFF) {
buffer_.push_back(static_cast<wchar_t>(cp));
} else {
cp -= 0x10000;
buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
}
return p;
};
auto p = s.data();
const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
if (s.size() >= block_size) {
for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
}
if (auto num_chars_left = s.data() + s.size() - p) {
char buf[2 * block_size - 1] = {};
memcpy(buf, p, to_unsigned(num_chars_left));
p = buf;
do {
p = transcode(p);
} while (p - buf < num_chars_left);
}
buffer_.push_back(0);
}
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT {
FMT_TRY {
memory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
char* system_message = &buf[0];
int result =
detail::safe_strerror(error_code, system_message, buf.size());
if (result == 0) {
format_to(std::back_inserter(out), "{}: {}", message, system_message);
return;
}
if (result != ERANGE)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
FMT_FUNC void detail::error_handler::on_error(const char* message) {
FMT_THROW(format_error(message));
}
FMT_FUNC void report_system_error(int error_code,
fmt::string_view message) FMT_NOEXCEPT {
report_error(format_system_error, error_code, message);
}
struct stringifier {
template <typename T> FMT_INLINE std::string operator()(T value) const {
return to_string(value);
}
std::string operator()(basic_format_arg<format_context>::handle h) const {
memory_buffer buf;
detail::buffer<char>& base = buf;
format_parse_context parse_ctx({});
format_context format_ctx(std::back_inserter(base), {}, {});
h.format(parse_ctx, format_ctx);
return to_string(buf);
}
};
FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
auto arg = args.get(0);
if (!arg) error_handler().on_error("argument not found");
return visit_format_arg(stringifier(), arg);
}
memory_buffer buffer;
detail::vformat_to(buffer, format_str, args);
return to_string(buffer);
}
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str,
basic_format_args<buffer_context<char>>(args));
#ifdef _WIN32
auto fd = _fileno(f);
if (_isatty(fd)) {
detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
auto written = DWORD();
if (!WriteConsoleW(reinterpret_cast<HANDLE>(_get_osfhandle(fd)),
u16.c_str(), static_cast<DWORD>(u16.size()), &written,
nullptr)) {
FMT_THROW(format_error("failed to write to console"));
}
return;
}
#endif
detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#ifdef _WIN32
// Print assuming legacy (non-Unicode) encoding.
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
format_args args) {
memory_buffer buffer;
detail::vformat_to(buffer, format_str,
basic_format_args<buffer_context<char>>(args));
fwrite_fully(buffer.data(), 1, buffer.size(), f);
}
#endif
FMT_FUNC void vprint(string_view format_str, format_args args) {
vprint(stdout, format_str, args);
}
FMT_END_NAMESPACE
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#endif // FMT_FORMAT_INL_H_